Copied to
clipboard

G = D8.D7order 224 = 25·7

The non-split extension by D8 of D7 acting via D7/C7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8.D7, C72SD32, C28.4D4, C14.9D8, C8.5D14, Dic283C2, C56.3C22, C7⋊C162C2, (C7×D8).1C2, C2.5(D4⋊D7), C4.2(C7⋊D4), SmallGroup(224,33)

Series: Derived Chief Lower central Upper central

C1C56 — D8.D7
C1C7C14C28C56Dic28 — D8.D7
C7C14C28C56 — D8.D7
C1C2C4C8D8

Generators and relations for D8.D7
 G = < a,b,c,d | a8=b2=c7=1, d2=a4, bab=dad-1=a-1, ac=ca, bc=cb, dbd-1=a5b, dcd-1=c-1 >

8C2
4C22
28C4
8C14
2D4
14Q8
4Dic7
4C2×C14
7C16
7Q16
2Dic14
2C7×D4
7SD32

Smallest permutation representation of D8.D7
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 8)(2 7)(3 6)(4 5)(10 16)(11 15)(12 14)(17 23)(18 22)(19 21)(25 27)(28 32)(29 31)(34 40)(35 39)(36 38)(41 45)(42 44)(46 48)(49 51)(52 56)(53 55)(57 58)(59 64)(60 63)(61 62)(65 72)(66 71)(67 70)(68 69)(73 76)(74 75)(77 80)(78 79)(81 82)(83 88)(84 87)(85 86)(89 94)(90 93)(91 92)(95 96)(97 100)(98 99)(101 104)(102 103)(105 109)(106 108)(110 112)
(1 65 62 103 92 79 82)(2 66 63 104 93 80 83)(3 67 64 97 94 73 84)(4 68 57 98 95 74 85)(5 69 58 99 96 75 86)(6 70 59 100 89 76 87)(7 71 60 101 90 77 88)(8 72 61 102 91 78 81)(9 50 47 107 30 33 20)(10 51 48 108 31 34 21)(11 52 41 109 32 35 22)(12 53 42 110 25 36 23)(13 54 43 111 26 37 24)(14 55 44 112 27 38 17)(15 56 45 105 28 39 18)(16 49 46 106 29 40 19)
(1 44 5 48)(2 43 6 47)(3 42 7 46)(4 41 8 45)(9 63 13 59)(10 62 14 58)(11 61 15 57)(12 60 16 64)(17 99 21 103)(18 98 22 102)(19 97 23 101)(20 104 24 100)(25 77 29 73)(26 76 30 80)(27 75 31 79)(28 74 32 78)(33 93 37 89)(34 92 38 96)(35 91 39 95)(36 90 40 94)(49 67 53 71)(50 66 54 70)(51 65 55 69)(52 72 56 68)(81 105 85 109)(82 112 86 108)(83 111 87 107)(84 110 88 106)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,8)(2,7)(3,6)(4,5)(10,16)(11,15)(12,14)(17,23)(18,22)(19,21)(25,27)(28,32)(29,31)(34,40)(35,39)(36,38)(41,45)(42,44)(46,48)(49,51)(52,56)(53,55)(57,58)(59,64)(60,63)(61,62)(65,72)(66,71)(67,70)(68,69)(73,76)(74,75)(77,80)(78,79)(81,82)(83,88)(84,87)(85,86)(89,94)(90,93)(91,92)(95,96)(97,100)(98,99)(101,104)(102,103)(105,109)(106,108)(110,112), (1,65,62,103,92,79,82)(2,66,63,104,93,80,83)(3,67,64,97,94,73,84)(4,68,57,98,95,74,85)(5,69,58,99,96,75,86)(6,70,59,100,89,76,87)(7,71,60,101,90,77,88)(8,72,61,102,91,78,81)(9,50,47,107,30,33,20)(10,51,48,108,31,34,21)(11,52,41,109,32,35,22)(12,53,42,110,25,36,23)(13,54,43,111,26,37,24)(14,55,44,112,27,38,17)(15,56,45,105,28,39,18)(16,49,46,106,29,40,19), (1,44,5,48)(2,43,6,47)(3,42,7,46)(4,41,8,45)(9,63,13,59)(10,62,14,58)(11,61,15,57)(12,60,16,64)(17,99,21,103)(18,98,22,102)(19,97,23,101)(20,104,24,100)(25,77,29,73)(26,76,30,80)(27,75,31,79)(28,74,32,78)(33,93,37,89)(34,92,38,96)(35,91,39,95)(36,90,40,94)(49,67,53,71)(50,66,54,70)(51,65,55,69)(52,72,56,68)(81,105,85,109)(82,112,86,108)(83,111,87,107)(84,110,88,106)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,8)(2,7)(3,6)(4,5)(10,16)(11,15)(12,14)(17,23)(18,22)(19,21)(25,27)(28,32)(29,31)(34,40)(35,39)(36,38)(41,45)(42,44)(46,48)(49,51)(52,56)(53,55)(57,58)(59,64)(60,63)(61,62)(65,72)(66,71)(67,70)(68,69)(73,76)(74,75)(77,80)(78,79)(81,82)(83,88)(84,87)(85,86)(89,94)(90,93)(91,92)(95,96)(97,100)(98,99)(101,104)(102,103)(105,109)(106,108)(110,112), (1,65,62,103,92,79,82)(2,66,63,104,93,80,83)(3,67,64,97,94,73,84)(4,68,57,98,95,74,85)(5,69,58,99,96,75,86)(6,70,59,100,89,76,87)(7,71,60,101,90,77,88)(8,72,61,102,91,78,81)(9,50,47,107,30,33,20)(10,51,48,108,31,34,21)(11,52,41,109,32,35,22)(12,53,42,110,25,36,23)(13,54,43,111,26,37,24)(14,55,44,112,27,38,17)(15,56,45,105,28,39,18)(16,49,46,106,29,40,19), (1,44,5,48)(2,43,6,47)(3,42,7,46)(4,41,8,45)(9,63,13,59)(10,62,14,58)(11,61,15,57)(12,60,16,64)(17,99,21,103)(18,98,22,102)(19,97,23,101)(20,104,24,100)(25,77,29,73)(26,76,30,80)(27,75,31,79)(28,74,32,78)(33,93,37,89)(34,92,38,96)(35,91,39,95)(36,90,40,94)(49,67,53,71)(50,66,54,70)(51,65,55,69)(52,72,56,68)(81,105,85,109)(82,112,86,108)(83,111,87,107)(84,110,88,106) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,8),(2,7),(3,6),(4,5),(10,16),(11,15),(12,14),(17,23),(18,22),(19,21),(25,27),(28,32),(29,31),(34,40),(35,39),(36,38),(41,45),(42,44),(46,48),(49,51),(52,56),(53,55),(57,58),(59,64),(60,63),(61,62),(65,72),(66,71),(67,70),(68,69),(73,76),(74,75),(77,80),(78,79),(81,82),(83,88),(84,87),(85,86),(89,94),(90,93),(91,92),(95,96),(97,100),(98,99),(101,104),(102,103),(105,109),(106,108),(110,112)], [(1,65,62,103,92,79,82),(2,66,63,104,93,80,83),(3,67,64,97,94,73,84),(4,68,57,98,95,74,85),(5,69,58,99,96,75,86),(6,70,59,100,89,76,87),(7,71,60,101,90,77,88),(8,72,61,102,91,78,81),(9,50,47,107,30,33,20),(10,51,48,108,31,34,21),(11,52,41,109,32,35,22),(12,53,42,110,25,36,23),(13,54,43,111,26,37,24),(14,55,44,112,27,38,17),(15,56,45,105,28,39,18),(16,49,46,106,29,40,19)], [(1,44,5,48),(2,43,6,47),(3,42,7,46),(4,41,8,45),(9,63,13,59),(10,62,14,58),(11,61,15,57),(12,60,16,64),(17,99,21,103),(18,98,22,102),(19,97,23,101),(20,104,24,100),(25,77,29,73),(26,76,30,80),(27,75,31,79),(28,74,32,78),(33,93,37,89),(34,92,38,96),(35,91,39,95),(36,90,40,94),(49,67,53,71),(50,66,54,70),(51,65,55,69),(52,72,56,68),(81,105,85,109),(82,112,86,108),(83,111,87,107),(84,110,88,106)]])

D8.D7 is a maximal subgroup of   D8⋊D14  D163D7  D7×SD32  SD32⋊D7  D8.D14  C56.30C23  C56.31C23
D8.D7 is a maximal quotient of   C8.5Dic14  C56.6D4  C14.SD32

32 conjugacy classes

class 1 2A2B4A4B7A7B7C8A8B14A14B14C14D···14I16A16B16C16D28A28B28C56A···56F
order122447778814141414···141616161628282856···56
size118256222222228···8141414144444···4

32 irreducible representations

dim111122222244
type+++++++++-
imageC1C2C2C2D4D7D8D14SD32C7⋊D4D4⋊D7D8.D7
kernelD8.D7C7⋊C16Dic28C7×D8C28D8C14C8C7C4C2C1
# reps111113234636

Matrix representation of D8.D7 in GL4(𝔽113) generated by

112000
011200
00060
003251
,
112000
31100
00060
00810
,
109000
442800
0010
0001
,
764500
603700
001625
005397
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,0,0,0,32,0,0,60,51],[112,31,0,0,0,1,0,0,0,0,0,81,0,0,60,0],[109,44,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[76,60,0,0,45,37,0,0,0,0,16,53,0,0,25,97] >;

D8.D7 in GAP, Magma, Sage, TeX

D_8.D_7
% in TeX

G:=Group("D8.D7");
// GroupNames label

G:=SmallGroup(224,33);
// by ID

G=gap.SmallGroup(224,33);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,96,73,218,116,122,579,297,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^7=1,d^2=a^4,b*a*b=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of D8.D7 in TeX

׿
×
𝔽