Copied to
clipboard

G = Q16⋊D14order 448 = 26·7

2nd semidirect product of Q16 and D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D88D14, Q167D14, C28.51D8, C56.32D4, C56.29C23, D56.11C22, C4○D82D7, C7⋊D166C2, C7⋊C164C22, (C2×C14).9D8, (C2×D56)⋊22C2, C75(C16⋊C22), (C2×C8).98D14, C14.68(C2×D8), C7⋊SD326C2, (C7×D8)⋊8C22, C8.7(C7⋊D4), C28.C86C2, C4.24(D4⋊D7), (C2×C28).185D4, C28.191(C2×D4), (C7×Q16)⋊7C22, C8.35(C22×D7), C22.5(D4⋊D7), (C2×C56).104C22, (C7×C4○D8)⋊4C2, C2.23(C2×D4⋊D7), C4.17(C2×C7⋊D4), (C2×C4).81(C7⋊D4), SmallGroup(448,727)

Series: Derived Chief Lower central Upper central

C1C56 — Q16⋊D14
C1C7C14C28C56D56C2×D56 — Q16⋊D14
C7C14C28C56 — Q16⋊D14
C1C2C2×C4C2×C8C4○D8

Generators and relations for Q16⋊D14
 G = < a,b,c,d | a8=c14=d2=1, b2=a4, bab-1=dad=a-1, ac=ca, cbc-1=a4b, dbd=a3b, dcd=c-1 >

Subgroups: 628 in 90 conjugacy classes, 35 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C16, C2×C8, D8, D8, SD16, Q16, C2×D4, C4○D4, C28, C28, D14, C2×C14, C2×C14, M5(2), D16, SD32, C2×D8, C4○D8, C56, D28, C2×C28, C2×C28, C7×D4, C7×Q8, C22×D7, C16⋊C22, C7⋊C16, D56, D56, C2×C56, C7×D8, C7×SD16, C7×Q16, C2×D28, C7×C4○D4, C28.C8, C7⋊D16, C7⋊SD32, C2×D56, C7×C4○D8, Q16⋊D14
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, C2×D8, C7⋊D4, C22×D7, C16⋊C22, D4⋊D7, C2×C7⋊D4, C2×D4⋊D7, Q16⋊D14

Smallest permutation representation of Q16⋊D14
On 112 points
Generators in S112
(1 47 19 40 13 54 26 33)(2 48 20 41 14 55 27 34)(3 49 21 42 8 56 28 35)(4 43 15 36 9 50 22 29)(5 44 16 37 10 51 23 30)(6 45 17 38 11 52 24 31)(7 46 18 39 12 53 25 32)(57 96 79 112 64 89 72 105)(58 97 80 99 65 90 73 106)(59 98 81 100 66 91 74 107)(60 85 82 101 67 92 75 108)(61 86 83 102 68 93 76 109)(62 87 84 103 69 94 77 110)(63 88 71 104 70 95 78 111)
(1 60 13 67)(2 68 14 61)(3 62 8 69)(4 70 9 63)(5 64 10 57)(6 58 11 65)(7 66 12 59)(15 71 22 78)(16 79 23 72)(17 73 24 80)(18 81 25 74)(19 75 26 82)(20 83 27 76)(21 77 28 84)(29 95 36 88)(30 89 37 96)(31 97 38 90)(32 91 39 98)(33 85 40 92)(34 93 41 86)(35 87 42 94)(43 104 50 111)(44 112 51 105)(45 106 52 99)(46 100 53 107)(47 108 54 101)(48 102 55 109)(49 110 56 103)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 32)(2 31)(3 30)(4 29)(5 35)(6 34)(7 33)(8 37)(9 36)(10 42)(11 41)(12 40)(13 39)(14 38)(15 50)(16 56)(17 55)(18 54)(19 53)(20 52)(21 51)(22 43)(23 49)(24 48)(25 47)(26 46)(27 45)(28 44)(57 84)(58 83)(59 82)(60 81)(61 80)(62 79)(63 78)(64 77)(65 76)(66 75)(67 74)(68 73)(69 72)(70 71)(85 98)(86 97)(87 96)(88 95)(89 94)(90 93)(91 92)(99 109)(100 108)(101 107)(102 106)(103 105)(110 112)

G:=sub<Sym(112)| (1,47,19,40,13,54,26,33)(2,48,20,41,14,55,27,34)(3,49,21,42,8,56,28,35)(4,43,15,36,9,50,22,29)(5,44,16,37,10,51,23,30)(6,45,17,38,11,52,24,31)(7,46,18,39,12,53,25,32)(57,96,79,112,64,89,72,105)(58,97,80,99,65,90,73,106)(59,98,81,100,66,91,74,107)(60,85,82,101,67,92,75,108)(61,86,83,102,68,93,76,109)(62,87,84,103,69,94,77,110)(63,88,71,104,70,95,78,111), (1,60,13,67)(2,68,14,61)(3,62,8,69)(4,70,9,63)(5,64,10,57)(6,58,11,65)(7,66,12,59)(15,71,22,78)(16,79,23,72)(17,73,24,80)(18,81,25,74)(19,75,26,82)(20,83,27,76)(21,77,28,84)(29,95,36,88)(30,89,37,96)(31,97,38,90)(32,91,39,98)(33,85,40,92)(34,93,41,86)(35,87,42,94)(43,104,50,111)(44,112,51,105)(45,106,52,99)(46,100,53,107)(47,108,54,101)(48,102,55,109)(49,110,56,103), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,32)(2,31)(3,30)(4,29)(5,35)(6,34)(7,33)(8,37)(9,36)(10,42)(11,41)(12,40)(13,39)(14,38)(15,50)(16,56)(17,55)(18,54)(19,53)(20,52)(21,51)(22,43)(23,49)(24,48)(25,47)(26,46)(27,45)(28,44)(57,84)(58,83)(59,82)(60,81)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(99,109)(100,108)(101,107)(102,106)(103,105)(110,112)>;

G:=Group( (1,47,19,40,13,54,26,33)(2,48,20,41,14,55,27,34)(3,49,21,42,8,56,28,35)(4,43,15,36,9,50,22,29)(5,44,16,37,10,51,23,30)(6,45,17,38,11,52,24,31)(7,46,18,39,12,53,25,32)(57,96,79,112,64,89,72,105)(58,97,80,99,65,90,73,106)(59,98,81,100,66,91,74,107)(60,85,82,101,67,92,75,108)(61,86,83,102,68,93,76,109)(62,87,84,103,69,94,77,110)(63,88,71,104,70,95,78,111), (1,60,13,67)(2,68,14,61)(3,62,8,69)(4,70,9,63)(5,64,10,57)(6,58,11,65)(7,66,12,59)(15,71,22,78)(16,79,23,72)(17,73,24,80)(18,81,25,74)(19,75,26,82)(20,83,27,76)(21,77,28,84)(29,95,36,88)(30,89,37,96)(31,97,38,90)(32,91,39,98)(33,85,40,92)(34,93,41,86)(35,87,42,94)(43,104,50,111)(44,112,51,105)(45,106,52,99)(46,100,53,107)(47,108,54,101)(48,102,55,109)(49,110,56,103), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,32)(2,31)(3,30)(4,29)(5,35)(6,34)(7,33)(8,37)(9,36)(10,42)(11,41)(12,40)(13,39)(14,38)(15,50)(16,56)(17,55)(18,54)(19,53)(20,52)(21,51)(22,43)(23,49)(24,48)(25,47)(26,46)(27,45)(28,44)(57,84)(58,83)(59,82)(60,81)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(99,109)(100,108)(101,107)(102,106)(103,105)(110,112) );

G=PermutationGroup([[(1,47,19,40,13,54,26,33),(2,48,20,41,14,55,27,34),(3,49,21,42,8,56,28,35),(4,43,15,36,9,50,22,29),(5,44,16,37,10,51,23,30),(6,45,17,38,11,52,24,31),(7,46,18,39,12,53,25,32),(57,96,79,112,64,89,72,105),(58,97,80,99,65,90,73,106),(59,98,81,100,66,91,74,107),(60,85,82,101,67,92,75,108),(61,86,83,102,68,93,76,109),(62,87,84,103,69,94,77,110),(63,88,71,104,70,95,78,111)], [(1,60,13,67),(2,68,14,61),(3,62,8,69),(4,70,9,63),(5,64,10,57),(6,58,11,65),(7,66,12,59),(15,71,22,78),(16,79,23,72),(17,73,24,80),(18,81,25,74),(19,75,26,82),(20,83,27,76),(21,77,28,84),(29,95,36,88),(30,89,37,96),(31,97,38,90),(32,91,39,98),(33,85,40,92),(34,93,41,86),(35,87,42,94),(43,104,50,111),(44,112,51,105),(45,106,52,99),(46,100,53,107),(47,108,54,101),(48,102,55,109),(49,110,56,103)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,32),(2,31),(3,30),(4,29),(5,35),(6,34),(7,33),(8,37),(9,36),(10,42),(11,41),(12,40),(13,39),(14,38),(15,50),(16,56),(17,55),(18,54),(19,53),(20,52),(21,51),(22,43),(23,49),(24,48),(25,47),(26,46),(27,45),(28,44),(57,84),(58,83),(59,82),(60,81),(61,80),(62,79),(63,78),(64,77),(65,76),(66,75),(67,74),(68,73),(69,72),(70,71),(85,98),(86,97),(87,96),(88,95),(89,94),(90,93),(91,92),(99,109),(100,108),(101,107),(102,106),(103,105),(110,112)]])

58 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B8C14A14B14C14D14E14F14G···14L16A16B16C16D28A···28F28G28H28I28J···28O56A···56L
order12222244477788814141414141414···141616161628···2828282828···2856···56
size112856562282222242224448···8282828282···24448···84···4

58 irreducible representations

dim11111122222222224444
type++++++++++++++++++
imageC1C2C2C2C2C2D4D4D7D8D8D14D14D14C7⋊D4C7⋊D4C16⋊C22D4⋊D7D4⋊D7Q16⋊D14
kernelQ16⋊D14C28.C8C7⋊D16C7⋊SD32C2×D56C7×C4○D8C56C2×C28C4○D8C28C2×C14C2×C8D8Q16C8C2×C4C7C4C22C1
# reps112211113223336623312

Matrix representation of Q16⋊D14 in GL4(𝔽113) generated by

414800
652100
11612165
521084841
,
146220
51702
72279951
868962106
,
333300
8010400
2968080
1775339
,
1081700
85500
38624109
657532109
G:=sub<GL(4,GF(113))| [41,65,11,52,48,21,61,108,0,0,21,48,0,0,65,41],[14,51,72,86,62,7,27,89,2,0,99,62,0,2,51,106],[33,80,2,17,33,104,96,75,0,0,80,33,0,0,80,9],[108,85,38,65,17,5,62,75,0,0,4,32,0,0,109,109] >;

Q16⋊D14 in GAP, Magma, Sage, TeX

Q_{16}\rtimes D_{14}
% in TeX

G:=Group("Q16:D14");
// GroupNames label

G:=SmallGroup(448,727);
// by ID

G=gap.SmallGroup(448,727);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,387,675,185,192,1684,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=c^14=d^2=1,b^2=a^4,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^4*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽