Copied to
clipboard

G = D8.D14order 448 = 26·7

1st non-split extension by D8 of D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8.6D14, C28.21D8, C56.34D4, D5614C22, C56.24C23, Dic2811C22, (C2×D8)⋊7D7, (C14×D8)⋊1C2, C7⋊D165C2, C7⋊C163C22, D8.D75C2, C74(C16⋊C22), C14.63(C2×D8), (C2×C14).42D8, (C2×C8).83D14, C8.2(C7⋊D4), D567C22C2, C28.C82C2, C4.17(D4⋊D7), (C2×C28).180D4, C28.160(C2×D4), (C7×D8).6C22, C8.30(C22×D7), (C2×C56).31C22, C22.10(D4⋊D7), C4.2(C2×C7⋊D4), C2.18(C2×D4⋊D7), (C2×C4).79(C7⋊D4), SmallGroup(448,681)

Series: Derived Chief Lower central Upper central

C1C56 — D8.D14
C1C7C14C28C56D56D567C2 — D8.D14
C7C14C28C56 — D8.D14
C1C2C2×C4C2×C8C2×D8

Generators and relations for D8.D14
 G = < a,b,c,d | a8=b2=1, c14=d2=a4, bab=dad-1=a-1, ac=ca, cbc-1=a4b, dbd-1=ab, dcd-1=c13 >

Subgroups: 484 in 90 conjugacy classes, 35 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C16, C2×C8, D8, D8, SD16, Q16, C2×D4, C4○D4, Dic7, C28, D14, C2×C14, C2×C14, M5(2), D16, SD32, C2×D8, C4○D8, C56, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C7×D4, C22×C14, C16⋊C22, C7⋊C16, C56⋊C2, D56, Dic28, C2×C56, C7×D8, C7×D8, C4○D28, D4×C14, C28.C8, C7⋊D16, D8.D7, D567C2, C14×D8, D8.D14
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, C2×D8, C7⋊D4, C22×D7, C16⋊C22, D4⋊D7, C2×C7⋊D4, C2×D4⋊D7, D8.D14

Smallest permutation representation of D8.D14
On 112 points
Generators in S112
(1 45 22 38 15 31 8 52)(2 46 23 39 16 32 9 53)(3 47 24 40 17 33 10 54)(4 48 25 41 18 34 11 55)(5 49 26 42 19 35 12 56)(6 50 27 43 20 36 13 29)(7 51 28 44 21 37 14 30)(57 89 64 96 71 103 78 110)(58 90 65 97 72 104 79 111)(59 91 66 98 73 105 80 112)(60 92 67 99 74 106 81 85)(61 93 68 100 75 107 82 86)(62 94 69 101 76 108 83 87)(63 95 70 102 77 109 84 88)
(1 8)(2 23)(3 10)(4 25)(5 12)(6 27)(7 14)(9 16)(11 18)(13 20)(15 22)(17 24)(19 26)(21 28)(29 43)(31 45)(33 47)(35 49)(37 51)(39 53)(41 55)(57 96)(58 111)(59 98)(60 85)(61 100)(62 87)(63 102)(64 89)(65 104)(66 91)(67 106)(68 93)(69 108)(70 95)(71 110)(72 97)(73 112)(74 99)(75 86)(76 101)(77 88)(78 103)(79 90)(80 105)(81 92)(82 107)(83 94)(84 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 65 15 79)(2 78 16 64)(3 63 17 77)(4 76 18 62)(5 61 19 75)(6 74 20 60)(7 59 21 73)(8 72 22 58)(9 57 23 71)(10 70 24 84)(11 83 25 69)(12 68 26 82)(13 81 27 67)(14 66 28 80)(29 106 43 92)(30 91 44 105)(31 104 45 90)(32 89 46 103)(33 102 47 88)(34 87 48 101)(35 100 49 86)(36 85 50 99)(37 98 51 112)(38 111 52 97)(39 96 53 110)(40 109 54 95)(41 94 55 108)(42 107 56 93)

G:=sub<Sym(112)| (1,45,22,38,15,31,8,52)(2,46,23,39,16,32,9,53)(3,47,24,40,17,33,10,54)(4,48,25,41,18,34,11,55)(5,49,26,42,19,35,12,56)(6,50,27,43,20,36,13,29)(7,51,28,44,21,37,14,30)(57,89,64,96,71,103,78,110)(58,90,65,97,72,104,79,111)(59,91,66,98,73,105,80,112)(60,92,67,99,74,106,81,85)(61,93,68,100,75,107,82,86)(62,94,69,101,76,108,83,87)(63,95,70,102,77,109,84,88), (1,8)(2,23)(3,10)(4,25)(5,12)(6,27)(7,14)(9,16)(11,18)(13,20)(15,22)(17,24)(19,26)(21,28)(29,43)(31,45)(33,47)(35,49)(37,51)(39,53)(41,55)(57,96)(58,111)(59,98)(60,85)(61,100)(62,87)(63,102)(64,89)(65,104)(66,91)(67,106)(68,93)(69,108)(70,95)(71,110)(72,97)(73,112)(74,99)(75,86)(76,101)(77,88)(78,103)(79,90)(80,105)(81,92)(82,107)(83,94)(84,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,65,15,79)(2,78,16,64)(3,63,17,77)(4,76,18,62)(5,61,19,75)(6,74,20,60)(7,59,21,73)(8,72,22,58)(9,57,23,71)(10,70,24,84)(11,83,25,69)(12,68,26,82)(13,81,27,67)(14,66,28,80)(29,106,43,92)(30,91,44,105)(31,104,45,90)(32,89,46,103)(33,102,47,88)(34,87,48,101)(35,100,49,86)(36,85,50,99)(37,98,51,112)(38,111,52,97)(39,96,53,110)(40,109,54,95)(41,94,55,108)(42,107,56,93)>;

G:=Group( (1,45,22,38,15,31,8,52)(2,46,23,39,16,32,9,53)(3,47,24,40,17,33,10,54)(4,48,25,41,18,34,11,55)(5,49,26,42,19,35,12,56)(6,50,27,43,20,36,13,29)(7,51,28,44,21,37,14,30)(57,89,64,96,71,103,78,110)(58,90,65,97,72,104,79,111)(59,91,66,98,73,105,80,112)(60,92,67,99,74,106,81,85)(61,93,68,100,75,107,82,86)(62,94,69,101,76,108,83,87)(63,95,70,102,77,109,84,88), (1,8)(2,23)(3,10)(4,25)(5,12)(6,27)(7,14)(9,16)(11,18)(13,20)(15,22)(17,24)(19,26)(21,28)(29,43)(31,45)(33,47)(35,49)(37,51)(39,53)(41,55)(57,96)(58,111)(59,98)(60,85)(61,100)(62,87)(63,102)(64,89)(65,104)(66,91)(67,106)(68,93)(69,108)(70,95)(71,110)(72,97)(73,112)(74,99)(75,86)(76,101)(77,88)(78,103)(79,90)(80,105)(81,92)(82,107)(83,94)(84,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,65,15,79)(2,78,16,64)(3,63,17,77)(4,76,18,62)(5,61,19,75)(6,74,20,60)(7,59,21,73)(8,72,22,58)(9,57,23,71)(10,70,24,84)(11,83,25,69)(12,68,26,82)(13,81,27,67)(14,66,28,80)(29,106,43,92)(30,91,44,105)(31,104,45,90)(32,89,46,103)(33,102,47,88)(34,87,48,101)(35,100,49,86)(36,85,50,99)(37,98,51,112)(38,111,52,97)(39,96,53,110)(40,109,54,95)(41,94,55,108)(42,107,56,93) );

G=PermutationGroup([[(1,45,22,38,15,31,8,52),(2,46,23,39,16,32,9,53),(3,47,24,40,17,33,10,54),(4,48,25,41,18,34,11,55),(5,49,26,42,19,35,12,56),(6,50,27,43,20,36,13,29),(7,51,28,44,21,37,14,30),(57,89,64,96,71,103,78,110),(58,90,65,97,72,104,79,111),(59,91,66,98,73,105,80,112),(60,92,67,99,74,106,81,85),(61,93,68,100,75,107,82,86),(62,94,69,101,76,108,83,87),(63,95,70,102,77,109,84,88)], [(1,8),(2,23),(3,10),(4,25),(5,12),(6,27),(7,14),(9,16),(11,18),(13,20),(15,22),(17,24),(19,26),(21,28),(29,43),(31,45),(33,47),(35,49),(37,51),(39,53),(41,55),(57,96),(58,111),(59,98),(60,85),(61,100),(62,87),(63,102),(64,89),(65,104),(66,91),(67,106),(68,93),(69,108),(70,95),(71,110),(72,97),(73,112),(74,99),(75,86),(76,101),(77,88),(78,103),(79,90),(80,105),(81,92),(82,107),(83,94),(84,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,65,15,79),(2,78,16,64),(3,63,17,77),(4,76,18,62),(5,61,19,75),(6,74,20,60),(7,59,21,73),(8,72,22,58),(9,57,23,71),(10,70,24,84),(11,83,25,69),(12,68,26,82),(13,81,27,67),(14,66,28,80),(29,106,43,92),(30,91,44,105),(31,104,45,90),(32,89,46,103),(33,102,47,88),(34,87,48,101),(35,100,49,86),(36,85,50,99),(37,98,51,112),(38,111,52,97),(39,96,53,110),(40,109,54,95),(41,94,55,108),(42,107,56,93)]])

58 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B8C14A···14I14J···14U16A16B16C16D28A···28F56A···56L
order12222244477788814···1414···141616161628···2856···56
size112885622562222242···28···8282828284···44···4

58 irreducible representations

dim1111112222222224444
type++++++++++++++++
imageC1C2C2C2C2C2D4D4D7D8D8D14D14C7⋊D4C7⋊D4C16⋊C22D4⋊D7D4⋊D7D8.D14
kernelD8.D14C28.C8C7⋊D16D8.D7D567C2C14×D8C56C2×C28C2×D8C28C2×C14C2×C8D8C8C2×C4C7C4C22C1
# reps11221111322366623312

Matrix representation of D8.D14 in GL4(𝔽113) generated by

04600
275100
86318282
0313182
,
1128600
0100
191128282
461128231
,
643300
124900
8364083
1864300
,
300094
4803030
8364083
950083
G:=sub<GL(4,GF(113))| [0,27,86,0,46,51,31,31,0,0,82,31,0,0,82,82],[112,0,19,46,86,1,112,112,0,0,82,82,0,0,82,31],[64,12,83,18,33,49,64,64,0,0,0,30,0,0,83,0],[30,48,83,95,0,0,64,0,0,30,0,0,94,30,83,83] >;

D8.D14 in GAP, Magma, Sage, TeX

D_8.D_{14}
% in TeX

G:=Group("D8.D14");
// GroupNames label

G:=SmallGroup(448,681);
// by ID

G=gap.SmallGroup(448,681);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,254,387,675,185,192,1684,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=1,c^14=d^2=a^4,b*a*b=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=a^4*b,d*b*d^-1=a*b,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽