Extensions 1→N→G→Q→1 with N=D28.2C4 and Q=C2

Direct product G=NxQ with N=D28.2C4 and Q=C2
dρLabelID
C2xD28.2C4224C2xD28.2C4448,1191

Semidirect products G=N:Q with N=D28.2C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D28.2C4:1C2 = C56.23D4φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:1C2448,694
D28.2C4:2C2 = D8:13D14φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:2C2448,1210
D28.2C4:3C2 = D28.30D4φ: C2/C1C2 ⊆ Out D28.2C42244D28.2C4:3C2448,1219
D28.2C4:4C2 = C56.44D4φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:4C2448,711
D28.2C4:5C2 = D28.29D4φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:5C2448,1215
D28.2C4:6C2 = C8.21D28φ: C2/C1C2 ⊆ Out D28.2C41124+D28.2C4:6C2448,431
D28.2C4:7C2 = D8:15D14φ: C2/C1C2 ⊆ Out D28.2C41124+D28.2C4:7C2448,1222
D28.2C4:8C2 = D8.10D14φ: C2/C1C2 ⊆ Out D28.2C42244-D28.2C4:8C2448,1224
D28.2C4:9C2 = C8.24D28φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:9C2448,432
D28.2C4:10C2 = D8:11D14φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:10C2448,1223
D28.2C4:11C2 = D56:11C4φ: C2/C1C2 ⊆ Out D28.2C41122D28.2C4:11C2448,234
D28.2C4:12C2 = D56:4C4φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:12C2448,251
D28.2C4:13C2 = C56.93D4φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:13C2448,678
D28.2C4:14C2 = C56.50D4φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:14C2448,679
D28.2C4:15C2 = C28.70C24φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:15C2448,1198
D28.2C4:16C2 = D7xC8oD4φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:16C2448,1202
D28.2C4:17C2 = C56.49C23φ: C2/C1C2 ⊆ Out D28.2C41124D28.2C4:17C2448,1203

Non-split extensions G=N.Q with N=D28.2C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D28.2C4.1C2 = C56.29D4φ: C2/C1C2 ⊆ Out D28.2C42244D28.2C4.1C2448,726
D28.2C4.2C2 = C8.20D28φ: C2/C1C2 ⊆ Out D28.2C42244-D28.2C4.2C2448,430
D28.2C4.3C2 = D28.C8φ: C2/C1C2 ⊆ Out D28.2C42242D28.2C4.3C2448,65
D28.2C4.4C2 = Dic14.C8φ: C2/C1C2 ⊆ Out D28.2C42244D28.2C4.4C2448,72
D28.2C4.5C2 = C16.12D14φ: C2/C1C2 ⊆ Out D28.2C42244D28.2C4.5C2448,441
D28.2C4.6C2 = D28.4C8φ: trivial image2242D28.2C4.6C2448,435

׿
x
:
Z
F
o
wr
Q
<