Copied to
clipboard

G = C8.21D28order 448 = 26·7

7th non-split extension by C8 of D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8.21D28, C56.19D4, D28.21D4, Dic14.21D4, M4(2).10D14, (C2×D56)⋊21C2, C8.C46D7, C4.57(C2×D28), (C2×C8).71D14, C4.136(D4×D7), C8⋊D1410C2, C28.137(C2×D4), C72(D4.4D4), D28.2C46C2, C28.46D43C2, C14.50(C4⋊D4), C2.23(C4⋊D28), (C2×C28).313C23, (C2×C56).103C22, C4○D28.40C22, (C2×D28).88C22, C22.7(Q82D7), (C7×M4(2)).7C22, C4.Dic7.38C22, (C7×C8.C4)⋊7C2, (C2×C14).4(C4○D4), (C2×C4).114(C22×D7), SmallGroup(448,431)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C8.21D28
C1C7C14C28C2×C28C4○D28D28.2C4 — C8.21D28
C7C14C2×C28 — C8.21D28
C1C2C2×C4C8.C4

Generators and relations for C8.21D28
 G = < a,b,c | a8=c2=1, b28=a4, bab-1=cac=a-1, cbc=a4b27 >

Subgroups: 796 in 108 conjugacy classes, 37 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C2×C8, C2×C8, M4(2), M4(2), D8, SD16, C2×D4, C4○D4, Dic7, C28, D14, C2×C14, C4.D4, C8.C4, C8○D4, C2×D8, C8⋊C22, C7⋊C8, C56, C56, Dic14, C4×D7, D28, D28, C7⋊D4, C2×C28, C22×D7, D4.4D4, C8×D7, C8⋊D7, C56⋊C2, D56, C4.Dic7, C2×C56, C7×M4(2), C2×D28, C4○D28, C28.46D4, C7×C8.C4, D28.2C4, C2×D56, C8⋊D14, C8.21D28
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, D28, C22×D7, D4.4D4, C2×D28, D4×D7, Q82D7, C4⋊D28, C8.21D28

Smallest permutation representation of C8.21D28
On 112 points
Generators in S112
(1 101 43 87 29 73 15 59)(2 60 16 74 30 88 44 102)(3 103 45 89 31 75 17 61)(4 62 18 76 32 90 46 104)(5 105 47 91 33 77 19 63)(6 64 20 78 34 92 48 106)(7 107 49 93 35 79 21 65)(8 66 22 80 36 94 50 108)(9 109 51 95 37 81 23 67)(10 68 24 82 38 96 52 110)(11 111 53 97 39 83 25 69)(12 70 26 84 40 98 54 112)(13 57 55 99 41 85 27 71)(14 72 28 86 42 100 56 58)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(57 109)(58 108)(59 107)(60 106)(61 105)(62 104)(63 103)(64 102)(65 101)(66 100)(67 99)(68 98)(69 97)(70 96)(71 95)(72 94)(73 93)(74 92)(75 91)(76 90)(77 89)(78 88)(79 87)(80 86)(81 85)(82 84)(110 112)

G:=sub<Sym(112)| (1,101,43,87,29,73,15,59)(2,60,16,74,30,88,44,102)(3,103,45,89,31,75,17,61)(4,62,18,76,32,90,46,104)(5,105,47,91,33,77,19,63)(6,64,20,78,34,92,48,106)(7,107,49,93,35,79,21,65)(8,66,22,80,36,94,50,108)(9,109,51,95,37,81,23,67)(10,68,24,82,38,96,52,110)(11,111,53,97,39,83,25,69)(12,70,26,84,40,98,54,112)(13,57,55,99,41,85,27,71)(14,72,28,86,42,100,56,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,109)(58,108)(59,107)(60,106)(61,105)(62,104)(63,103)(64,102)(65,101)(66,100)(67,99)(68,98)(69,97)(70,96)(71,95)(72,94)(73,93)(74,92)(75,91)(76,90)(77,89)(78,88)(79,87)(80,86)(81,85)(82,84)(110,112)>;

G:=Group( (1,101,43,87,29,73,15,59)(2,60,16,74,30,88,44,102)(3,103,45,89,31,75,17,61)(4,62,18,76,32,90,46,104)(5,105,47,91,33,77,19,63)(6,64,20,78,34,92,48,106)(7,107,49,93,35,79,21,65)(8,66,22,80,36,94,50,108)(9,109,51,95,37,81,23,67)(10,68,24,82,38,96,52,110)(11,111,53,97,39,83,25,69)(12,70,26,84,40,98,54,112)(13,57,55,99,41,85,27,71)(14,72,28,86,42,100,56,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(57,109)(58,108)(59,107)(60,106)(61,105)(62,104)(63,103)(64,102)(65,101)(66,100)(67,99)(68,98)(69,97)(70,96)(71,95)(72,94)(73,93)(74,92)(75,91)(76,90)(77,89)(78,88)(79,87)(80,86)(81,85)(82,84)(110,112) );

G=PermutationGroup([[(1,101,43,87,29,73,15,59),(2,60,16,74,30,88,44,102),(3,103,45,89,31,75,17,61),(4,62,18,76,32,90,46,104),(5,105,47,91,33,77,19,63),(6,64,20,78,34,92,48,106),(7,107,49,93,35,79,21,65),(8,66,22,80,36,94,50,108),(9,109,51,95,37,81,23,67),(10,68,24,82,38,96,52,110),(11,111,53,97,39,83,25,69),(12,70,26,84,40,98,54,112),(13,57,55,99,41,85,27,71),(14,72,28,86,42,100,56,58)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(57,109),(58,108),(59,107),(60,106),(61,105),(62,104),(63,103),(64,102),(65,101),(66,100),(67,99),(68,98),(69,97),(70,96),(71,95),(72,94),(73,93),(74,92),(75,91),(76,90),(77,89),(78,88),(79,87),(80,86),(81,85),(82,84),(110,112)]])

58 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B8C8D8E8F8G14A14B14C14D14E14F28A···28F28G28H28I56A···56L56M···56X
order122222444777888888814141414141428···2828282856···5656···56
size11228565622282222248828282224442···24444···48···8

58 irreducible representations

dim111111222222224444
type+++++++++++++++++
imageC1C2C2C2C2C2D4D4D4D7C4○D4D14D14D28D4.4D4D4×D7Q82D7C8.21D28
kernelC8.21D28C28.46D4C7×C8.C4D28.2C4C2×D56C8⋊D14C56Dic14D28C8.C4C2×C14C2×C8M4(2)C8C7C4C22C1
# reps12111221132361223312

Matrix representation of C8.21D28 in GL4(𝔽113) generated by

844300
709100
009170
004384
,
002534
0079112
941300
10010400
,
941300
941900
002534
008888
G:=sub<GL(4,GF(113))| [84,70,0,0,43,91,0,0,0,0,91,43,0,0,70,84],[0,0,94,100,0,0,13,104,25,79,0,0,34,112,0,0],[94,94,0,0,13,19,0,0,0,0,25,88,0,0,34,88] >;

C8.21D28 in GAP, Magma, Sage, TeX

C_8._{21}D_{28}
% in TeX

G:=Group("C8.21D28");
// GroupNames label

G:=SmallGroup(448,431);
// by ID

G=gap.SmallGroup(448,431);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,120,254,219,226,1123,136,438,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^8=c^2=1,b^28=a^4,b*a*b^-1=c*a*c=a^-1,c*b*c=a^4*b^27>;
// generators/relations

׿
×
𝔽