Copied to
clipboard

G = C3×C20.46D4order 480 = 25·3·5

Direct product of C3 and C20.46D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C20.46D4, C60.217D4, C12.63D20, (C2×D20).7C6, C4.11(C3×D20), C20.46(C3×D4), C4.Dic52C6, (C6×D20).18C2, C158(C4.D4), (C3×M4(2))⋊7D5, M4(2)⋊3(C3×D5), (C5×M4(2))⋊7C6, C22.4(D5×C12), (C2×C12).211D10, (C22×D5).1C12, C12.114(C5⋊D4), C30.87(C22⋊C4), (C15×M4(2))⋊15C2, (C2×C60).276C22, C6.40(D10⋊C4), (D5×C2×C6).2C4, (C2×C4).1(C6×D5), C52(C3×C4.D4), (C2×C6).38(C4×D5), C4.21(C3×C5⋊D4), (C2×C20).12(C2×C6), (C2×C30).119(C2×C4), (C2×C10).22(C2×C12), C2.9(C3×D10⋊C4), C10.19(C3×C22⋊C4), (C3×C4.Dic5)⋊14C2, SmallGroup(480,101)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C3×C20.46D4
C1C5C10C2×C10C2×C20C2×C60C6×D20 — C3×C20.46D4
C5C10C2×C10 — C3×C20.46D4
C1C6C2×C12C3×M4(2)

Generators and relations for C3×C20.46D4
 G = < a,b,c,d | a3=b20=d2=1, c4=b10, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=b15c3 >

Subgroups: 416 in 92 conjugacy classes, 38 normal (34 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C8, C2×C4, D4, C23, D5, C10, C10, C12, C2×C6, C2×C6, C15, M4(2), M4(2), C2×D4, C20, D10, C2×C10, C24, C2×C12, C3×D4, C22×C6, C3×D5, C30, C30, C4.D4, C52C8, C40, D20, C2×C20, C22×D5, C3×M4(2), C3×M4(2), C6×D4, C60, C6×D5, C2×C30, C4.Dic5, C5×M4(2), C2×D20, C3×C4.D4, C3×C52C8, C120, C3×D20, C2×C60, D5×C2×C6, C20.46D4, C3×C4.Dic5, C15×M4(2), C6×D20, C3×C20.46D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, D5, C12, C2×C6, C22⋊C4, D10, C2×C12, C3×D4, C3×D5, C4.D4, C4×D5, D20, C5⋊D4, C3×C22⋊C4, C6×D5, D10⋊C4, C3×C4.D4, D5×C12, C3×D20, C3×C5⋊D4, C20.46D4, C3×D10⋊C4, C3×C20.46D4

Smallest permutation representation of C3×C20.46D4
On 120 points
Generators in S120
(1 48 31)(2 49 32)(3 50 33)(4 51 34)(5 52 35)(6 53 36)(7 54 37)(8 55 38)(9 56 39)(10 57 40)(11 58 21)(12 59 22)(13 60 23)(14 41 24)(15 42 25)(16 43 26)(17 44 27)(18 45 28)(19 46 29)(20 47 30)(61 118 95)(62 119 96)(63 120 97)(64 101 98)(65 102 99)(66 103 100)(67 104 81)(68 105 82)(69 106 83)(70 107 84)(71 108 85)(72 109 86)(73 110 87)(74 111 88)(75 112 89)(76 113 90)(77 114 91)(78 115 92)(79 116 93)(80 117 94)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 61 16 66 11 71 6 76)(2 80 17 65 12 70 7 75)(3 79 18 64 13 69 8 74)(4 78 19 63 14 68 9 73)(5 77 20 62 15 67 10 72)(21 85 36 90 31 95 26 100)(22 84 37 89 32 94 27 99)(23 83 38 88 33 93 28 98)(24 82 39 87 34 92 29 97)(25 81 40 86 35 91 30 96)(41 105 56 110 51 115 46 120)(42 104 57 109 52 114 47 119)(43 103 58 108 53 113 48 118)(44 102 59 107 54 112 49 117)(45 101 60 106 55 111 50 116)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(22 40)(23 39)(24 38)(25 37)(26 36)(27 35)(28 34)(29 33)(30 32)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(56 60)(57 59)(61 71)(62 70)(63 69)(64 68)(65 67)(72 80)(73 79)(74 78)(75 77)(81 99)(82 98)(83 97)(84 96)(85 95)(86 94)(87 93)(88 92)(89 91)(101 105)(102 104)(106 120)(107 119)(108 118)(109 117)(110 116)(111 115)(112 114)

G:=sub<Sym(120)| (1,48,31)(2,49,32)(3,50,33)(4,51,34)(5,52,35)(6,53,36)(7,54,37)(8,55,38)(9,56,39)(10,57,40)(11,58,21)(12,59,22)(13,60,23)(14,41,24)(15,42,25)(16,43,26)(17,44,27)(18,45,28)(19,46,29)(20,47,30)(61,118,95)(62,119,96)(63,120,97)(64,101,98)(65,102,99)(66,103,100)(67,104,81)(68,105,82)(69,106,83)(70,107,84)(71,108,85)(72,109,86)(73,110,87)(74,111,88)(75,112,89)(76,113,90)(77,114,91)(78,115,92)(79,116,93)(80,117,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,61,16,66,11,71,6,76)(2,80,17,65,12,70,7,75)(3,79,18,64,13,69,8,74)(4,78,19,63,14,68,9,73)(5,77,20,62,15,67,10,72)(21,85,36,90,31,95,26,100)(22,84,37,89,32,94,27,99)(23,83,38,88,33,93,28,98)(24,82,39,87,34,92,29,97)(25,81,40,86,35,91,30,96)(41,105,56,110,51,115,46,120)(42,104,57,109,52,114,47,119)(43,103,58,108,53,113,48,118)(44,102,59,107,54,112,49,117)(45,101,60,106,55,111,50,116), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(56,60)(57,59)(61,71)(62,70)(63,69)(64,68)(65,67)(72,80)(73,79)(74,78)(75,77)(81,99)(82,98)(83,97)(84,96)(85,95)(86,94)(87,93)(88,92)(89,91)(101,105)(102,104)(106,120)(107,119)(108,118)(109,117)(110,116)(111,115)(112,114)>;

G:=Group( (1,48,31)(2,49,32)(3,50,33)(4,51,34)(5,52,35)(6,53,36)(7,54,37)(8,55,38)(9,56,39)(10,57,40)(11,58,21)(12,59,22)(13,60,23)(14,41,24)(15,42,25)(16,43,26)(17,44,27)(18,45,28)(19,46,29)(20,47,30)(61,118,95)(62,119,96)(63,120,97)(64,101,98)(65,102,99)(66,103,100)(67,104,81)(68,105,82)(69,106,83)(70,107,84)(71,108,85)(72,109,86)(73,110,87)(74,111,88)(75,112,89)(76,113,90)(77,114,91)(78,115,92)(79,116,93)(80,117,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,61,16,66,11,71,6,76)(2,80,17,65,12,70,7,75)(3,79,18,64,13,69,8,74)(4,78,19,63,14,68,9,73)(5,77,20,62,15,67,10,72)(21,85,36,90,31,95,26,100)(22,84,37,89,32,94,27,99)(23,83,38,88,33,93,28,98)(24,82,39,87,34,92,29,97)(25,81,40,86,35,91,30,96)(41,105,56,110,51,115,46,120)(42,104,57,109,52,114,47,119)(43,103,58,108,53,113,48,118)(44,102,59,107,54,112,49,117)(45,101,60,106,55,111,50,116), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,40)(23,39)(24,38)(25,37)(26,36)(27,35)(28,34)(29,33)(30,32)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(56,60)(57,59)(61,71)(62,70)(63,69)(64,68)(65,67)(72,80)(73,79)(74,78)(75,77)(81,99)(82,98)(83,97)(84,96)(85,95)(86,94)(87,93)(88,92)(89,91)(101,105)(102,104)(106,120)(107,119)(108,118)(109,117)(110,116)(111,115)(112,114) );

G=PermutationGroup([[(1,48,31),(2,49,32),(3,50,33),(4,51,34),(5,52,35),(6,53,36),(7,54,37),(8,55,38),(9,56,39),(10,57,40),(11,58,21),(12,59,22),(13,60,23),(14,41,24),(15,42,25),(16,43,26),(17,44,27),(18,45,28),(19,46,29),(20,47,30),(61,118,95),(62,119,96),(63,120,97),(64,101,98),(65,102,99),(66,103,100),(67,104,81),(68,105,82),(69,106,83),(70,107,84),(71,108,85),(72,109,86),(73,110,87),(74,111,88),(75,112,89),(76,113,90),(77,114,91),(78,115,92),(79,116,93),(80,117,94)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,61,16,66,11,71,6,76),(2,80,17,65,12,70,7,75),(3,79,18,64,13,69,8,74),(4,78,19,63,14,68,9,73),(5,77,20,62,15,67,10,72),(21,85,36,90,31,95,26,100),(22,84,37,89,32,94,27,99),(23,83,38,88,33,93,28,98),(24,82,39,87,34,92,29,97),(25,81,40,86,35,91,30,96),(41,105,56,110,51,115,46,120),(42,104,57,109,52,114,47,119),(43,103,58,108,53,113,48,118),(44,102,59,107,54,112,49,117),(45,101,60,106,55,111,50,116)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(22,40),(23,39),(24,38),(25,37),(26,36),(27,35),(28,34),(29,33),(30,32),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(56,60),(57,59),(61,71),(62,70),(63,69),(64,68),(65,67),(72,80),(73,79),(74,78),(75,77),(81,99),(82,98),(83,97),(84,96),(85,95),(86,94),(87,93),(88,92),(89,91),(101,105),(102,104),(106,120),(107,119),(108,118),(109,117),(110,116),(111,115),(112,114)]])

93 conjugacy classes

class 1 2A2B2C2D3A3B4A4B5A5B6A6B6C6D6E6F6G6H8A8B8C8D10A10B10C10D12A12B12C12D15A15B15C15D20A20B20C20D20E20F24A24B24C24D24E24F24G24H30A30B30C30D30E30F30G30H40A···40H60A···60H60I60J60K60L120A···120P
order122223344556666666688881010101012121212151515152020202020202424242424242424303030303030303040···4060···6060606060120···120
size1122020112222112220202020442020224422222222222244444420202020222244444···42···244444···4

93 irreducible representations

dim11111111112222222222224444
type++++++++++
imageC1C2C2C2C3C4C6C6C6C12D4D5D10C3×D4C3×D5D20C5⋊D4C4×D5C6×D5C3×D20C3×C5⋊D4D5×C12C4.D4C3×C4.D4C20.46D4C3×C20.46D4
kernelC3×C20.46D4C3×C4.Dic5C15×M4(2)C6×D20C20.46D4D5×C2×C6C4.Dic5C5×M4(2)C2×D20C22×D5C60C3×M4(2)C2×C12C20M4(2)C12C12C2×C6C2×C4C4C4C22C15C5C3C1
# reps11112422282224444448881248

Matrix representation of C3×C20.46D4 in GL4(𝔽241) generated by

225000
022500
002250
000225
,
854100
20012200
008541
00200122
,
002400
00521
20015600
1194100
,
240000
52100
002400
00521
G:=sub<GL(4,GF(241))| [225,0,0,0,0,225,0,0,0,0,225,0,0,0,0,225],[85,200,0,0,41,122,0,0,0,0,85,200,0,0,41,122],[0,0,200,119,0,0,156,41,240,52,0,0,0,1,0,0],[240,52,0,0,0,1,0,0,0,0,240,52,0,0,0,1] >;

C3×C20.46D4 in GAP, Magma, Sage, TeX

C_3\times C_{20}._{46}D_4
% in TeX

G:=Group("C3xC20.46D4");
// GroupNames label

G:=SmallGroup(480,101);
// by ID

G=gap.SmallGroup(480,101);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,365,92,1683,136,1271,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^20=d^2=1,c^4=b^10,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=b^15*c^3>;
// generators/relations

׿
×
𝔽