Copied to
clipboard

G = C60.28D4order 480 = 25·3·5

28th non-split extension by C60 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C60.28D4, C12.5D20, (C6×D20).1C2, (C2×D20).6S3, (C2×C20).40D6, C4.Dic32D5, C60.7C45C2, (C2×C12).41D10, C152(C4.D4), C52(C12.D4), C12.5(C5⋊D4), C4.19(C15⋊D4), C33(C20.46D4), C4.19(C3⋊D20), C20.77(C3⋊D4), (C2×C60).29C22, C22.3(D5×Dic3), C30.41(C22⋊C4), C6.24(D10⋊C4), (C22×D5).1Dic3, C2.3(D10⋊Dic3), C10.13(C6.D4), (D5×C2×C6).1C4, (C2×C4).1(S3×D5), (C2×C6).45(C4×D5), (C2×C30).80(C2×C4), (C5×C4.Dic3)⋊1C2, (C2×C10).21(C2×Dic3), SmallGroup(480,34)

Series: Derived Chief Lower central Upper central

C1C2×C30 — C60.28D4
C1C5C15C30C60C2×C60C6×D20 — C60.28D4
C15C30C2×C30 — C60.28D4
C1C2C2×C4

Generators and relations for C60.28D4
 G = < a,b,c | a12=1, b20=a6, c2=a9, bab-1=a-1, cac-1=a5, cbc-1=a3b19 >

Subgroups: 476 in 92 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C8, C2×C4, D4, C23, D5, C10, C10, C12, C2×C6, C2×C6, C15, M4(2), C2×D4, C20, D10, C2×C10, C3⋊C8, C2×C12, C3×D4, C22×C6, C3×D5, C30, C30, C4.D4, C52C8, C40, D20, C2×C20, C22×D5, C4.Dic3, C4.Dic3, C6×D4, C60, C6×D5, C2×C30, C4.Dic5, C5×M4(2), C2×D20, C12.D4, C5×C3⋊C8, C153C8, C3×D20, C2×C60, D5×C2×C6, C20.46D4, C5×C4.Dic3, C60.7C4, C6×D20, C60.28D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D5, Dic3, D6, C22⋊C4, D10, C2×Dic3, C3⋊D4, C4.D4, C4×D5, D20, C5⋊D4, C6.D4, S3×D5, D10⋊C4, C12.D4, D5×Dic3, C15⋊D4, C3⋊D20, C20.46D4, D10⋊Dic3, C60.28D4

Smallest permutation representation of C60.28D4
On 120 points
Generators in S120
(1 93 49 31 83 79 21 113 69 11 103 59)(2 60 104 12 70 114 22 80 84 32 50 94)(3 95 51 33 85 41 23 115 71 13 105 61)(4 62 106 14 72 116 24 42 86 34 52 96)(5 97 53 35 87 43 25 117 73 15 107 63)(6 64 108 16 74 118 26 44 88 36 54 98)(7 99 55 37 89 45 27 119 75 17 109 65)(8 66 110 18 76 120 28 46 90 38 56 100)(9 101 57 39 91 47 29 81 77 19 111 67)(10 68 112 20 78 82 30 48 92 40 58 102)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 30 11 20 21 10 31 40)(2 39 32 9 22 19 12 29)(3 28 13 18 23 8 33 38)(4 37 34 7 24 17 14 27)(5 26 15 16 25 6 35 36)(41 46 51 76 61 66 71 56)(42 55 72 65 62 75 52 45)(43 44 53 74 63 64 73 54)(47 80 57 70 67 60 77 50)(48 49 78 59 68 69 58 79)(81 114 91 104 101 94 111 84)(82 83 112 93 102 103 92 113)(85 110 95 100 105 90 115 120)(86 119 116 89 106 99 96 109)(87 108 97 98 107 88 117 118)

G:=sub<Sym(120)| (1,93,49,31,83,79,21,113,69,11,103,59)(2,60,104,12,70,114,22,80,84,32,50,94)(3,95,51,33,85,41,23,115,71,13,105,61)(4,62,106,14,72,116,24,42,86,34,52,96)(5,97,53,35,87,43,25,117,73,15,107,63)(6,64,108,16,74,118,26,44,88,36,54,98)(7,99,55,37,89,45,27,119,75,17,109,65)(8,66,110,18,76,120,28,46,90,38,56,100)(9,101,57,39,91,47,29,81,77,19,111,67)(10,68,112,20,78,82,30,48,92,40,58,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30,11,20,21,10,31,40)(2,39,32,9,22,19,12,29)(3,28,13,18,23,8,33,38)(4,37,34,7,24,17,14,27)(5,26,15,16,25,6,35,36)(41,46,51,76,61,66,71,56)(42,55,72,65,62,75,52,45)(43,44,53,74,63,64,73,54)(47,80,57,70,67,60,77,50)(48,49,78,59,68,69,58,79)(81,114,91,104,101,94,111,84)(82,83,112,93,102,103,92,113)(85,110,95,100,105,90,115,120)(86,119,116,89,106,99,96,109)(87,108,97,98,107,88,117,118)>;

G:=Group( (1,93,49,31,83,79,21,113,69,11,103,59)(2,60,104,12,70,114,22,80,84,32,50,94)(3,95,51,33,85,41,23,115,71,13,105,61)(4,62,106,14,72,116,24,42,86,34,52,96)(5,97,53,35,87,43,25,117,73,15,107,63)(6,64,108,16,74,118,26,44,88,36,54,98)(7,99,55,37,89,45,27,119,75,17,109,65)(8,66,110,18,76,120,28,46,90,38,56,100)(9,101,57,39,91,47,29,81,77,19,111,67)(10,68,112,20,78,82,30,48,92,40,58,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30,11,20,21,10,31,40)(2,39,32,9,22,19,12,29)(3,28,13,18,23,8,33,38)(4,37,34,7,24,17,14,27)(5,26,15,16,25,6,35,36)(41,46,51,76,61,66,71,56)(42,55,72,65,62,75,52,45)(43,44,53,74,63,64,73,54)(47,80,57,70,67,60,77,50)(48,49,78,59,68,69,58,79)(81,114,91,104,101,94,111,84)(82,83,112,93,102,103,92,113)(85,110,95,100,105,90,115,120)(86,119,116,89,106,99,96,109)(87,108,97,98,107,88,117,118) );

G=PermutationGroup([[(1,93,49,31,83,79,21,113,69,11,103,59),(2,60,104,12,70,114,22,80,84,32,50,94),(3,95,51,33,85,41,23,115,71,13,105,61),(4,62,106,14,72,116,24,42,86,34,52,96),(5,97,53,35,87,43,25,117,73,15,107,63),(6,64,108,16,74,118,26,44,88,36,54,98),(7,99,55,37,89,45,27,119,75,17,109,65),(8,66,110,18,76,120,28,46,90,38,56,100),(9,101,57,39,91,47,29,81,77,19,111,67),(10,68,112,20,78,82,30,48,92,40,58,102)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30,11,20,21,10,31,40),(2,39,32,9,22,19,12,29),(3,28,13,18,23,8,33,38),(4,37,34,7,24,17,14,27),(5,26,15,16,25,6,35,36),(41,46,51,76,61,66,71,56),(42,55,72,65,62,75,52,45),(43,44,53,74,63,64,73,54),(47,80,57,70,67,60,77,50),(48,49,78,59,68,69,58,79),(81,114,91,104,101,94,111,84),(82,83,112,93,102,103,92,113),(85,110,95,100,105,90,115,120),(86,119,116,89,106,99,96,109),(87,108,97,98,107,88,117,118)]])

57 conjugacy classes

class 1 2A2B2C2D 3 4A4B5A5B6A6B6C6D6E6F6G8A8B8C8D10A10B10C10D12A12B15A15B20A20B20C20D20E20F30A···30F40A···40H60A···60H
order122223445566666668888101010101212151520202020202030···3040···4060···60
size1122020222222222020202012126060224444442222444···412···124···4

57 irreducible representations

dim11111222222222244444444
type++++++++-++++-+-+
imageC1C2C2C2C4S3D4D5D6Dic3D10C3⋊D4D20C5⋊D4C4×D5C4.D4S3×D5C12.D4C15⋊D4C3⋊D20D5×Dic3C20.46D4C60.28D4
kernelC60.28D4C5×C4.Dic3C60.7C4C6×D20D5×C2×C6C2×D20C60C4.Dic3C2×C20C22×D5C2×C12C20C12C12C2×C6C15C2×C4C5C4C4C22C3C1
# reps11114122122444412222248

Matrix representation of C60.28D4 in GL4(𝔽241) generated by

1784500
1966300
0022248
0019319
,
0001
0024051
23819700
4416300
,
0001
0010
23819700
44300
G:=sub<GL(4,GF(241))| [178,196,0,0,45,63,0,0,0,0,222,193,0,0,48,19],[0,0,238,44,0,0,197,163,0,240,0,0,1,51,0,0],[0,0,238,44,0,0,197,3,0,1,0,0,1,0,0,0] >;

C60.28D4 in GAP, Magma, Sage, TeX

C_{60}._{28}D_4
% in TeX

G:=Group("C60.28D4");
// GroupNames label

G:=SmallGroup(480,34);
// by ID

G=gap.SmallGroup(480,34);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,141,36,422,100,346,1356,18822]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^20=a^6,c^2=a^9,b*a*b^-1=a^-1,c*a*c^-1=a^5,c*b*c^-1=a^3*b^19>;
// generators/relations

׿
×
𝔽