metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D60⋊11C4, Dic15⋊20D4, C4⋊C4⋊8D15, C4⋊1(C4×D15), C12⋊6(C4×D5), C15⋊37(C4×D4), C20⋊10(C4×S3), C60⋊12(C2×C4), C2.4(D4×D15), D30⋊20(C2×C4), (C2×D60).8C2, (C2×C4).30D30, C6.104(D4×D5), C3⋊3(D20⋊8C4), C5⋊4(Dic3⋊5D4), (C4×Dic15)⋊3C2, (C2×C20).211D6, C10.106(S3×D4), C30.312(C2×D4), D30⋊3C4⋊12C2, (C2×C12).209D10, C30.258(C4○D4), C2.2(Q8⋊3D15), (C2×C60).178C22, C30.162(C22×C4), (C2×C30).290C23, C6.40(Q8⋊2D5), C10.40(Q8⋊3S3), C22.18(C22×D15), (C22×D15).82C22, (C2×Dic15).239C22, (C5×C4⋊C4)⋊4S3, (C3×C4⋊C4)⋊4D5, (C15×C4⋊C4)⋊4C2, C6.67(C2×C4×D5), (C2×C4×D15)⋊18C2, C10.99(S3×C2×C4), C2.13(C2×C4×D15), (C2×C6).286(C22×D5), (C2×C10).285(C22×S3), SmallGroup(480,858)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D60⋊11C4
G = < a,b,c | a60=b2=c4=1, bab=a-1, cac-1=a31, cbc-1=a30b >
Subgroups: 1188 in 188 conjugacy classes, 65 normal (33 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C2×C4, C2×C4, C2×C4, D4, C23, D5, C10, Dic3, C12, C12, D6, C2×C6, C15, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, C20, D10, C2×C10, C4×S3, D12, C2×Dic3, C2×C12, C2×C12, C22×S3, D15, C30, C4×D4, C4×D5, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C4×Dic3, D6⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, Dic15, Dic15, C60, C60, D30, D30, C2×C30, C4×Dic5, D10⋊C4, C5×C4⋊C4, C2×C4×D5, C2×D20, Dic3⋊5D4, C4×D15, D60, C2×Dic15, C2×C60, C2×C60, C22×D15, D20⋊8C4, C4×Dic15, D30⋊3C4, C15×C4⋊C4, C2×C4×D15, C2×D60, D60⋊11C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D5, D6, C22×C4, C2×D4, C4○D4, D10, C4×S3, C22×S3, D15, C4×D4, C4×D5, C22×D5, S3×C2×C4, S3×D4, Q8⋊3S3, D30, C2×C4×D5, D4×D5, Q8⋊2D5, Dic3⋊5D4, C4×D15, C22×D15, D20⋊8C4, C2×C4×D15, D4×D15, Q8⋊3D15, D60⋊11C4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 121)(2 180)(3 179)(4 178)(5 177)(6 176)(7 175)(8 174)(9 173)(10 172)(11 171)(12 170)(13 169)(14 168)(15 167)(16 166)(17 165)(18 164)(19 163)(20 162)(21 161)(22 160)(23 159)(24 158)(25 157)(26 156)(27 155)(28 154)(29 153)(30 152)(31 151)(32 150)(33 149)(34 148)(35 147)(36 146)(37 145)(38 144)(39 143)(40 142)(41 141)(42 140)(43 139)(44 138)(45 137)(46 136)(47 135)(48 134)(49 133)(50 132)(51 131)(52 130)(53 129)(54 128)(55 127)(56 126)(57 125)(58 124)(59 123)(60 122)(61 235)(62 234)(63 233)(64 232)(65 231)(66 230)(67 229)(68 228)(69 227)(70 226)(71 225)(72 224)(73 223)(74 222)(75 221)(76 220)(77 219)(78 218)(79 217)(80 216)(81 215)(82 214)(83 213)(84 212)(85 211)(86 210)(87 209)(88 208)(89 207)(90 206)(91 205)(92 204)(93 203)(94 202)(95 201)(96 200)(97 199)(98 198)(99 197)(100 196)(101 195)(102 194)(103 193)(104 192)(105 191)(106 190)(107 189)(108 188)(109 187)(110 186)(111 185)(112 184)(113 183)(114 182)(115 181)(116 240)(117 239)(118 238)(119 237)(120 236)
(1 80 122 217)(2 111 123 188)(3 82 124 219)(4 113 125 190)(5 84 126 221)(6 115 127 192)(7 86 128 223)(8 117 129 194)(9 88 130 225)(10 119 131 196)(11 90 132 227)(12 61 133 198)(13 92 134 229)(14 63 135 200)(15 94 136 231)(16 65 137 202)(17 96 138 233)(18 67 139 204)(19 98 140 235)(20 69 141 206)(21 100 142 237)(22 71 143 208)(23 102 144 239)(24 73 145 210)(25 104 146 181)(26 75 147 212)(27 106 148 183)(28 77 149 214)(29 108 150 185)(30 79 151 216)(31 110 152 187)(32 81 153 218)(33 112 154 189)(34 83 155 220)(35 114 156 191)(36 85 157 222)(37 116 158 193)(38 87 159 224)(39 118 160 195)(40 89 161 226)(41 120 162 197)(42 91 163 228)(43 62 164 199)(44 93 165 230)(45 64 166 201)(46 95 167 232)(47 66 168 203)(48 97 169 234)(49 68 170 205)(50 99 171 236)(51 70 172 207)(52 101 173 238)(53 72 174 209)(54 103 175 240)(55 74 176 211)(56 105 177 182)(57 76 178 213)(58 107 179 184)(59 78 180 215)(60 109 121 186)
G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,121)(2,180)(3,179)(4,178)(5,177)(6,176)(7,175)(8,174)(9,173)(10,172)(11,171)(12,170)(13,169)(14,168)(15,167)(16,166)(17,165)(18,164)(19,163)(20,162)(21,161)(22,160)(23,159)(24,158)(25,157)(26,156)(27,155)(28,154)(29,153)(30,152)(31,151)(32,150)(33,149)(34,148)(35,147)(36,146)(37,145)(38,144)(39,143)(40,142)(41,141)(42,140)(43,139)(44,138)(45,137)(46,136)(47,135)(48,134)(49,133)(50,132)(51,131)(52,130)(53,129)(54,128)(55,127)(56,126)(57,125)(58,124)(59,123)(60,122)(61,235)(62,234)(63,233)(64,232)(65,231)(66,230)(67,229)(68,228)(69,227)(70,226)(71,225)(72,224)(73,223)(74,222)(75,221)(76,220)(77,219)(78,218)(79,217)(80,216)(81,215)(82,214)(83,213)(84,212)(85,211)(86,210)(87,209)(88,208)(89,207)(90,206)(91,205)(92,204)(93,203)(94,202)(95,201)(96,200)(97,199)(98,198)(99,197)(100,196)(101,195)(102,194)(103,193)(104,192)(105,191)(106,190)(107,189)(108,188)(109,187)(110,186)(111,185)(112,184)(113,183)(114,182)(115,181)(116,240)(117,239)(118,238)(119,237)(120,236), (1,80,122,217)(2,111,123,188)(3,82,124,219)(4,113,125,190)(5,84,126,221)(6,115,127,192)(7,86,128,223)(8,117,129,194)(9,88,130,225)(10,119,131,196)(11,90,132,227)(12,61,133,198)(13,92,134,229)(14,63,135,200)(15,94,136,231)(16,65,137,202)(17,96,138,233)(18,67,139,204)(19,98,140,235)(20,69,141,206)(21,100,142,237)(22,71,143,208)(23,102,144,239)(24,73,145,210)(25,104,146,181)(26,75,147,212)(27,106,148,183)(28,77,149,214)(29,108,150,185)(30,79,151,216)(31,110,152,187)(32,81,153,218)(33,112,154,189)(34,83,155,220)(35,114,156,191)(36,85,157,222)(37,116,158,193)(38,87,159,224)(39,118,160,195)(40,89,161,226)(41,120,162,197)(42,91,163,228)(43,62,164,199)(44,93,165,230)(45,64,166,201)(46,95,167,232)(47,66,168,203)(48,97,169,234)(49,68,170,205)(50,99,171,236)(51,70,172,207)(52,101,173,238)(53,72,174,209)(54,103,175,240)(55,74,176,211)(56,105,177,182)(57,76,178,213)(58,107,179,184)(59,78,180,215)(60,109,121,186)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,121)(2,180)(3,179)(4,178)(5,177)(6,176)(7,175)(8,174)(9,173)(10,172)(11,171)(12,170)(13,169)(14,168)(15,167)(16,166)(17,165)(18,164)(19,163)(20,162)(21,161)(22,160)(23,159)(24,158)(25,157)(26,156)(27,155)(28,154)(29,153)(30,152)(31,151)(32,150)(33,149)(34,148)(35,147)(36,146)(37,145)(38,144)(39,143)(40,142)(41,141)(42,140)(43,139)(44,138)(45,137)(46,136)(47,135)(48,134)(49,133)(50,132)(51,131)(52,130)(53,129)(54,128)(55,127)(56,126)(57,125)(58,124)(59,123)(60,122)(61,235)(62,234)(63,233)(64,232)(65,231)(66,230)(67,229)(68,228)(69,227)(70,226)(71,225)(72,224)(73,223)(74,222)(75,221)(76,220)(77,219)(78,218)(79,217)(80,216)(81,215)(82,214)(83,213)(84,212)(85,211)(86,210)(87,209)(88,208)(89,207)(90,206)(91,205)(92,204)(93,203)(94,202)(95,201)(96,200)(97,199)(98,198)(99,197)(100,196)(101,195)(102,194)(103,193)(104,192)(105,191)(106,190)(107,189)(108,188)(109,187)(110,186)(111,185)(112,184)(113,183)(114,182)(115,181)(116,240)(117,239)(118,238)(119,237)(120,236), (1,80,122,217)(2,111,123,188)(3,82,124,219)(4,113,125,190)(5,84,126,221)(6,115,127,192)(7,86,128,223)(8,117,129,194)(9,88,130,225)(10,119,131,196)(11,90,132,227)(12,61,133,198)(13,92,134,229)(14,63,135,200)(15,94,136,231)(16,65,137,202)(17,96,138,233)(18,67,139,204)(19,98,140,235)(20,69,141,206)(21,100,142,237)(22,71,143,208)(23,102,144,239)(24,73,145,210)(25,104,146,181)(26,75,147,212)(27,106,148,183)(28,77,149,214)(29,108,150,185)(30,79,151,216)(31,110,152,187)(32,81,153,218)(33,112,154,189)(34,83,155,220)(35,114,156,191)(36,85,157,222)(37,116,158,193)(38,87,159,224)(39,118,160,195)(40,89,161,226)(41,120,162,197)(42,91,163,228)(43,62,164,199)(44,93,165,230)(45,64,166,201)(46,95,167,232)(47,66,168,203)(48,97,169,234)(49,68,170,205)(50,99,171,236)(51,70,172,207)(52,101,173,238)(53,72,174,209)(54,103,175,240)(55,74,176,211)(56,105,177,182)(57,76,178,213)(58,107,179,184)(59,78,180,215)(60,109,121,186) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,121),(2,180),(3,179),(4,178),(5,177),(6,176),(7,175),(8,174),(9,173),(10,172),(11,171),(12,170),(13,169),(14,168),(15,167),(16,166),(17,165),(18,164),(19,163),(20,162),(21,161),(22,160),(23,159),(24,158),(25,157),(26,156),(27,155),(28,154),(29,153),(30,152),(31,151),(32,150),(33,149),(34,148),(35,147),(36,146),(37,145),(38,144),(39,143),(40,142),(41,141),(42,140),(43,139),(44,138),(45,137),(46,136),(47,135),(48,134),(49,133),(50,132),(51,131),(52,130),(53,129),(54,128),(55,127),(56,126),(57,125),(58,124),(59,123),(60,122),(61,235),(62,234),(63,233),(64,232),(65,231),(66,230),(67,229),(68,228),(69,227),(70,226),(71,225),(72,224),(73,223),(74,222),(75,221),(76,220),(77,219),(78,218),(79,217),(80,216),(81,215),(82,214),(83,213),(84,212),(85,211),(86,210),(87,209),(88,208),(89,207),(90,206),(91,205),(92,204),(93,203),(94,202),(95,201),(96,200),(97,199),(98,198),(99,197),(100,196),(101,195),(102,194),(103,193),(104,192),(105,191),(106,190),(107,189),(108,188),(109,187),(110,186),(111,185),(112,184),(113,183),(114,182),(115,181),(116,240),(117,239),(118,238),(119,237),(120,236)], [(1,80,122,217),(2,111,123,188),(3,82,124,219),(4,113,125,190),(5,84,126,221),(6,115,127,192),(7,86,128,223),(8,117,129,194),(9,88,130,225),(10,119,131,196),(11,90,132,227),(12,61,133,198),(13,92,134,229),(14,63,135,200),(15,94,136,231),(16,65,137,202),(17,96,138,233),(18,67,139,204),(19,98,140,235),(20,69,141,206),(21,100,142,237),(22,71,143,208),(23,102,144,239),(24,73,145,210),(25,104,146,181),(26,75,147,212),(27,106,148,183),(28,77,149,214),(29,108,150,185),(30,79,151,216),(31,110,152,187),(32,81,153,218),(33,112,154,189),(34,83,155,220),(35,114,156,191),(36,85,157,222),(37,116,158,193),(38,87,159,224),(39,118,160,195),(40,89,161,226),(41,120,162,197),(42,91,163,228),(43,62,164,199),(44,93,165,230),(45,64,166,201),(46,95,167,232),(47,66,168,203),(48,97,169,234),(49,68,170,205),(50,99,171,236),(51,70,172,207),(52,101,173,238),(53,72,174,209),(54,103,175,240),(55,74,176,211),(56,105,177,182),(57,76,178,213),(58,107,179,184),(59,78,180,215),(60,109,121,186)]])
90 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 5A | 5B | 6A | 6B | 6C | 10A | ··· | 10F | 12A | ··· | 12F | 15A | 15B | 15C | 15D | 20A | ··· | 20L | 30A | ··· | 30L | 60A | ··· | 60X |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 10 | ··· | 10 | 12 | ··· | 12 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
| size | 1 | 1 | 1 | 1 | 30 | 30 | 30 | 30 | 2 | 2 | ··· | 2 | 15 | 15 | 15 | 15 | 30 | 30 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
90 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | D4 | D5 | D6 | C4○D4 | D10 | C4×S3 | D15 | C4×D5 | D30 | C4×D15 | S3×D4 | Q8⋊3S3 | D4×D5 | Q8⋊2D5 | D4×D15 | Q8⋊3D15 |
| kernel | D60⋊11C4 | C4×Dic15 | D30⋊3C4 | C15×C4⋊C4 | C2×C4×D15 | C2×D60 | D60 | C5×C4⋊C4 | Dic15 | C3×C4⋊C4 | C2×C20 | C30 | C2×C12 | C20 | C4⋊C4 | C12 | C2×C4 | C4 | C10 | C10 | C6 | C6 | C2 | C2 |
| # reps | 1 | 1 | 2 | 1 | 2 | 1 | 8 | 1 | 2 | 2 | 3 | 2 | 6 | 4 | 4 | 8 | 12 | 16 | 1 | 1 | 2 | 2 | 4 | 4 |
Matrix representation of D60⋊11C4 ►in GL6(𝔽61)
| 31 | 14 | 0 | 0 | 0 | 0 |
| 47 | 37 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 |
| 0 | 0 | 60 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 57 | 16 |
| 0 | 0 | 0 | 0 | 18 | 4 |
| 33 | 37 | 0 | 0 | 0 | 0 |
| 25 | 28 | 0 | 0 | 0 | 0 |
| 0 | 0 | 60 | 60 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 57 | 16 |
| 0 | 0 | 0 | 0 | 41 | 4 |
| 60 | 0 | 0 | 0 | 0 | 0 |
| 0 | 60 | 0 | 0 | 0 | 0 |
| 0 | 0 | 50 | 0 | 0 | 0 |
| 0 | 0 | 0 | 50 | 0 | 0 |
| 0 | 0 | 0 | 0 | 60 | 0 |
| 0 | 0 | 0 | 0 | 30 | 1 |
G:=sub<GL(6,GF(61))| [31,47,0,0,0,0,14,37,0,0,0,0,0,0,1,60,0,0,0,0,1,0,0,0,0,0,0,0,57,18,0,0,0,0,16,4],[33,25,0,0,0,0,37,28,0,0,0,0,0,0,60,0,0,0,0,0,60,1,0,0,0,0,0,0,57,41,0,0,0,0,16,4],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,50,0,0,0,0,0,0,50,0,0,0,0,0,0,60,30,0,0,0,0,0,1] >;
D60⋊11C4 in GAP, Magma, Sage, TeX
D_{60}\rtimes_{11}C_4 % in TeX
G:=Group("D60:11C4"); // GroupNames label
G:=SmallGroup(480,858);
// by ID
G=gap.SmallGroup(480,858);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,253,120,219,58,2693,18822]);
// Polycyclic
G:=Group<a,b,c|a^60=b^2=c^4=1,b*a*b=a^-1,c*a*c^-1=a^31,c*b*c^-1=a^30*b>;
// generators/relations