Extensions 1→N→G→Q→1 with N=C3×D5 and Q=C4○D4

Direct product G=N×Q with N=C3×D5 and Q=C4○D4
dρLabelID
C3×D5×C4○D41204C3xD5xC4oD4480,1145

Semidirect products G=N:Q with N=C3×D5 and Q=C4○D4
extensionφ:Q→Out NdρLabelID
(C3×D5)⋊1(C4○D4) = D5×C4○D12φ: C4○D4/C2×C4C2 ⊆ Out C3×D51204(C3xD5):1(C4oD4)480,1090
(C3×D5)⋊2(C4○D4) = D5×D42S3φ: C4○D4/D4C2 ⊆ Out C3×D51208-(C3xD5):2(C4oD4)480,1098
(C3×D5)⋊3(C4○D4) = D5×Q83S3φ: C4○D4/Q8C2 ⊆ Out C3×D51208+(C3xD5):3(C4oD4)480,1108

Non-split extensions G=N.Q with N=C3×D5 and Q=C4○D4
extensionφ:Q→Out NdρLabelID
(C3×D5).1(C4○D4) = F5×Dic6φ: C4○D4/C4C22 ⊆ Out C3×D51208-(C3xD5).1(C4oD4)480,982
(C3×D5).2(C4○D4) = C4⋊F53S3φ: C4○D4/C4C22 ⊆ Out C3×D51208(C3xD5).2(C4oD4)480,983
(C3×D5).3(C4○D4) = Dic65F5φ: C4○D4/C4C22 ⊆ Out C3×D51208-(C3xD5).3(C4oD4)480,984
(C3×D5).4(C4○D4) = (C4×S3)⋊F5φ: C4○D4/C4C22 ⊆ Out C3×D51208(C3xD5).4(C4oD4)480,985
(C3×D5).5(C4○D4) = F5×D12φ: C4○D4/C4C22 ⊆ Out C3×D5608+(C3xD5).5(C4oD4)480,995
(C3×D5).6(C4○D4) = D603C4φ: C4○D4/C4C22 ⊆ Out C3×D5608+(C3xD5).6(C4oD4)480,997
(C3×D5).7(C4○D4) = C22⋊F5.S3φ: C4○D4/C22C22 ⊆ Out C3×D51208-(C3xD5).7(C4oD4)480,999
(C3×D5).8(C4○D4) = F5×C3⋊D4φ: C4○D4/C22C22 ⊆ Out C3×D5608(C3xD5).8(C4oD4)480,1010
(C3×D5).9(C4○D4) = C3⋊D4⋊F5φ: C4○D4/C22C22 ⊆ Out C3×D5608(C3xD5).9(C4oD4)480,1012
(C3×D5).10(C4○D4) = (C2×C12)⋊6F5φ: C4○D4/C2×C4C2 ⊆ Out C3×D51204(C3xD5).10(C4oD4)480,1065
(C3×D5).11(C4○D4) = C3×D10.C23φ: C4○D4/C2×C4C2 ⊆ Out C3×D51204(C3xD5).11(C4oD4)480,1052
(C3×D5).12(C4○D4) = D4×C3⋊F5φ: C4○D4/D4C2 ⊆ Out C3×D5608(C3xD5).12(C4oD4)480,1067
(C3×D5).13(C4○D4) = C3×D4×F5φ: C4○D4/D4C2 ⊆ Out C3×D5608(C3xD5).13(C4oD4)480,1054
(C3×D5).14(C4○D4) = Q8×C3⋊F5φ: C4○D4/Q8C2 ⊆ Out C3×D51208(C3xD5).14(C4oD4)480,1069
(C3×D5).15(C4○D4) = C3×Q8×F5φ: C4○D4/Q8C2 ⊆ Out C3×D51208(C3xD5).15(C4oD4)480,1056

׿
×
𝔽