Copied to
clipboard

G = C10xD25order 500 = 22·53

Direct product of C10 and D25

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C10xD25, C50:3C10, C52.3D10, (C5xC50):2C2, C25:3(C2xC10), (C5xC25):3C22, (C5xC10).7D5, C5.1(D5xC10), C10.4(C5xD5), SmallGroup(500,28)

Series: Derived Chief Lower central Upper central

C1C25 — C10xD25
C1C5C25C5xC25C5xD25 — C10xD25
C25 — C10xD25
C1C10

Generators and relations for C10xD25
 G = < a,b,c | a10=b25=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 214 in 38 conjugacy classes, 18 normal (14 characteristic)
Quotients: C1, C2, C22, C5, D5, C10, D10, C2xC10, D25, C5xD5, D50, D5xC10, C5xD25, C10xD25
25C2
25C2
2C5
2C5
25C22
2C10
2C10
5D5
5D5
25C10
25C10
2C25
2C25
5D10
25C2xC10
2C50
2C50
5C5xD5
5C5xD5
5D5xC10

Smallest permutation representation of C10xD25
On 100 points
Generators in S100
(1 28 11 38 21 48 6 33 16 43)(2 29 12 39 22 49 7 34 17 44)(3 30 13 40 23 50 8 35 18 45)(4 31 14 41 24 26 9 36 19 46)(5 32 15 42 25 27 10 37 20 47)(51 79 66 94 56 84 71 99 61 89)(52 80 67 95 57 85 72 100 62 90)(53 81 68 96 58 86 73 76 63 91)(54 82 69 97 59 87 74 77 64 92)(55 83 70 98 60 88 75 78 65 93)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 68)(2 67)(3 66)(4 65)(5 64)(6 63)(7 62)(8 61)(9 60)(10 59)(11 58)(12 57)(13 56)(14 55)(15 54)(16 53)(17 52)(18 51)(19 75)(20 74)(21 73)(22 72)(23 71)(24 70)(25 69)(26 98)(27 97)(28 96)(29 95)(30 94)(31 93)(32 92)(33 91)(34 90)(35 89)(36 88)(37 87)(38 86)(39 85)(40 84)(41 83)(42 82)(43 81)(44 80)(45 79)(46 78)(47 77)(48 76)(49 100)(50 99)

G:=sub<Sym(100)| (1,28,11,38,21,48,6,33,16,43)(2,29,12,39,22,49,7,34,17,44)(3,30,13,40,23,50,8,35,18,45)(4,31,14,41,24,26,9,36,19,46)(5,32,15,42,25,27,10,37,20,47)(51,79,66,94,56,84,71,99,61,89)(52,80,67,95,57,85,72,100,62,90)(53,81,68,96,58,86,73,76,63,91)(54,82,69,97,59,87,74,77,64,92)(55,83,70,98,60,88,75,78,65,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,75)(20,74)(21,73)(22,72)(23,71)(24,70)(25,69)(26,98)(27,97)(28,96)(29,95)(30,94)(31,93)(32,92)(33,91)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,84)(41,83)(42,82)(43,81)(44,80)(45,79)(46,78)(47,77)(48,76)(49,100)(50,99)>;

G:=Group( (1,28,11,38,21,48,6,33,16,43)(2,29,12,39,22,49,7,34,17,44)(3,30,13,40,23,50,8,35,18,45)(4,31,14,41,24,26,9,36,19,46)(5,32,15,42,25,27,10,37,20,47)(51,79,66,94,56,84,71,99,61,89)(52,80,67,95,57,85,72,100,62,90)(53,81,68,96,58,86,73,76,63,91)(54,82,69,97,59,87,74,77,64,92)(55,83,70,98,60,88,75,78,65,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,68)(2,67)(3,66)(4,65)(5,64)(6,63)(7,62)(8,61)(9,60)(10,59)(11,58)(12,57)(13,56)(14,55)(15,54)(16,53)(17,52)(18,51)(19,75)(20,74)(21,73)(22,72)(23,71)(24,70)(25,69)(26,98)(27,97)(28,96)(29,95)(30,94)(31,93)(32,92)(33,91)(34,90)(35,89)(36,88)(37,87)(38,86)(39,85)(40,84)(41,83)(42,82)(43,81)(44,80)(45,79)(46,78)(47,77)(48,76)(49,100)(50,99) );

G=PermutationGroup([[(1,28,11,38,21,48,6,33,16,43),(2,29,12,39,22,49,7,34,17,44),(3,30,13,40,23,50,8,35,18,45),(4,31,14,41,24,26,9,36,19,46),(5,32,15,42,25,27,10,37,20,47),(51,79,66,94,56,84,71,99,61,89),(52,80,67,95,57,85,72,100,62,90),(53,81,68,96,58,86,73,76,63,91),(54,82,69,97,59,87,74,77,64,92),(55,83,70,98,60,88,75,78,65,93)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,68),(2,67),(3,66),(4,65),(5,64),(6,63),(7,62),(8,61),(9,60),(10,59),(11,58),(12,57),(13,56),(14,55),(15,54),(16,53),(17,52),(18,51),(19,75),(20,74),(21,73),(22,72),(23,71),(24,70),(25,69),(26,98),(27,97),(28,96),(29,95),(30,94),(31,93),(32,92),(33,91),(34,90),(35,89),(36,88),(37,87),(38,86),(39,85),(40,84),(41,83),(42,82),(43,81),(44,80),(45,79),(46,78),(47,77),(48,76),(49,100),(50,99)]])

140 conjugacy classes

class 1 2A2B2C5A5B5C5D5E···5N10A10B10C10D10E···10N10O···10V25A···25AX50A···50AX
order122255555···51010101010···1010···1025···2550···50
size11252511112···211112···225···252···22···2

140 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C5C10C10D5D10D25C5xD5D50D5xC10C5xD25C10xD25
kernelC10xD25C5xD25C5xC50D50D25C50C5xC10C52C10C10C5C5C2C1
# reps121484221081084040

Matrix representation of C10xD25 in GL3(F101) generated by

6500
0840
0084
,
100
08820
0031
,
100
08820
03213
G:=sub<GL(3,GF(101))| [65,0,0,0,84,0,0,0,84],[1,0,0,0,88,0,0,20,31],[1,0,0,0,88,32,0,20,13] >;

C10xD25 in GAP, Magma, Sage, TeX

C_{10}\times D_{25}
% in TeX

G:=Group("C10xD25");
// GroupNames label

G:=SmallGroup(500,28);
// by ID

G=gap.SmallGroup(500,28);
# by ID

G:=PCGroup([5,-2,-2,-5,-5,-5,3603,418,10004]);
// Polycyclic

G:=Group<a,b,c|a^10=b^25=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C10xD25 in TeX

׿
x
:
Z
F
o
wr
Q
<