Copied to
clipboard

G = D5xC50order 500 = 22·53

Direct product of C50 and D5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: D5xC50, C10:C50, C5:(C2xC50), (C5xC50):1C2, (D5xC10).C5, (C5xC25):2C22, C10.9(C5xD5), C5.4(D5xC10), (C5xC10).6C10, (C5xD5).4C10, C52.2(C2xC10), SmallGroup(500,29)

Series: Derived Chief Lower central Upper central

C1C5 — D5xC50
C1C5C52C5xC25D5xC25 — D5xC50
C5 — D5xC50
C1C50

Generators and relations for D5xC50
 G = < a,b,c | a50=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 82 in 38 conjugacy classes, 21 normal (15 characteristic)
Quotients: C1, C2, C22, C5, D5, C10, D10, C2xC10, C25, C50, C5xD5, C2xC50, D5xC10, D5xC25, D5xC50
5C2
5C2
2C5
2C5
5C22
2C10
2C10
5C10
5C10
2C25
2C25
5C2xC10
2C50
2C50
5C50
5C50
5C2xC50

Smallest permutation representation of D5xC50
On 100 points
Generators in S100
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 21 41 11 31)(2 22 42 12 32)(3 23 43 13 33)(4 24 44 14 34)(5 25 45 15 35)(6 26 46 16 36)(7 27 47 17 37)(8 28 48 18 38)(9 29 49 19 39)(10 30 50 20 40)(51 81 61 91 71)(52 82 62 92 72)(53 83 63 93 73)(54 84 64 94 74)(55 85 65 95 75)(56 86 66 96 76)(57 87 67 97 77)(58 88 68 98 78)(59 89 69 99 79)(60 90 70 100 80)
(1 80)(2 81)(3 82)(4 83)(5 84)(6 85)(7 86)(8 87)(9 88)(10 89)(11 90)(12 91)(13 92)(14 93)(15 94)(16 95)(17 96)(18 97)(19 98)(20 99)(21 100)(22 51)(23 52)(24 53)(25 54)(26 55)(27 56)(28 57)(29 58)(30 59)(31 60)(32 61)(33 62)(34 63)(35 64)(36 65)(37 66)(38 67)(39 68)(40 69)(41 70)(42 71)(43 72)(44 73)(45 74)(46 75)(47 76)(48 77)(49 78)(50 79)

G:=sub<Sym(100)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,21,41,11,31)(2,22,42,12,32)(3,23,43,13,33)(4,24,44,14,34)(5,25,45,15,35)(6,26,46,16,36)(7,27,47,17,37)(8,28,48,18,38)(9,29,49,19,39)(10,30,50,20,40)(51,81,61,91,71)(52,82,62,92,72)(53,83,63,93,73)(54,84,64,94,74)(55,85,65,95,75)(56,86,66,96,76)(57,87,67,97,77)(58,88,68,98,78)(59,89,69,99,79)(60,90,70,100,80), (1,80)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58)(30,59)(31,60)(32,61)(33,62)(34,63)(35,64)(36,65)(37,66)(38,67)(39,68)(40,69)(41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,21,41,11,31)(2,22,42,12,32)(3,23,43,13,33)(4,24,44,14,34)(5,25,45,15,35)(6,26,46,16,36)(7,27,47,17,37)(8,28,48,18,38)(9,29,49,19,39)(10,30,50,20,40)(51,81,61,91,71)(52,82,62,92,72)(53,83,63,93,73)(54,84,64,94,74)(55,85,65,95,75)(56,86,66,96,76)(57,87,67,97,77)(58,88,68,98,78)(59,89,69,99,79)(60,90,70,100,80), (1,80)(2,81)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,51)(23,52)(24,53)(25,54)(26,55)(27,56)(28,57)(29,58)(30,59)(31,60)(32,61)(33,62)(34,63)(35,64)(36,65)(37,66)(38,67)(39,68)(40,69)(41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,21,41,11,31),(2,22,42,12,32),(3,23,43,13,33),(4,24,44,14,34),(5,25,45,15,35),(6,26,46,16,36),(7,27,47,17,37),(8,28,48,18,38),(9,29,49,19,39),(10,30,50,20,40),(51,81,61,91,71),(52,82,62,92,72),(53,83,63,93,73),(54,84,64,94,74),(55,85,65,95,75),(56,86,66,96,76),(57,87,67,97,77),(58,88,68,98,78),(59,89,69,99,79),(60,90,70,100,80)], [(1,80),(2,81),(3,82),(4,83),(5,84),(6,85),(7,86),(8,87),(9,88),(10,89),(11,90),(12,91),(13,92),(14,93),(15,94),(16,95),(17,96),(18,97),(19,98),(20,99),(21,100),(22,51),(23,52),(24,53),(25,54),(26,55),(27,56),(28,57),(29,58),(30,59),(31,60),(32,61),(33,62),(34,63),(35,64),(36,65),(37,66),(38,67),(39,68),(40,69),(41,70),(42,71),(43,72),(44,73),(45,74),(46,75),(47,76),(48,77),(49,78),(50,79)]])

200 conjugacy classes

class 1 2A2B2C5A5B5C5D5E···5N10A10B10C10D10E···10N10O···10V25A···25T25U···25BH50A···50T50U···50BH50BI···50CV
order122255555···51010101010···1010···1025···2525···2550···5050···5050···50
size115511112···211112···25···51···12···21···12···25···5

200 irreducible representations

dim111111111222222
type+++++
imageC1C2C2C5C10C10C25C50C50D5D10C5xD5D5xC10D5xC25D5xC50
kernelD5xC50D5xC25C5xC50D5xC10C5xD5C5xC10D10D5C10C50C25C10C5C2C1
# reps12148420402022884040

Matrix representation of D5xC50 in GL2(F101) generated by

450
045
,
360
087
,
014
650
G:=sub<GL(2,GF(101))| [45,0,0,45],[36,0,0,87],[0,65,14,0] >;

D5xC50 in GAP, Magma, Sage, TeX

D_5\times C_{50}
% in TeX

G:=Group("D5xC50");
// GroupNames label

G:=SmallGroup(500,29);
// by ID

G=gap.SmallGroup(500,29);
# by ID

G:=PCGroup([5,-2,-2,-5,-5,-5,87,10004]);
// Polycyclic

G:=Group<a,b,c|a^50=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D5xC50 in TeX

׿
x
:
Z
F
o
wr
Q
<