Extensions 1→N→G→Q→1 with N=C4 and Q=D8

Direct product G=N×Q with N=C4 and Q=D8
dρLabelID
C4×D832C4xD864,118

Semidirect products G=N:Q with N=C4 and Q=D8
extensionφ:Q→Aut NdρLabelID
C41D8 = C84D4φ: D8/C8C2 ⊆ Aut C432C4:1D864,174
C42D8 = C4⋊D8φ: D8/D4C2 ⊆ Aut C432C4:2D864,140

Non-split extensions G=N.Q with N=C4 and Q=D8
extensionφ:Q→Aut NdρLabelID
C4.1D8 = D32φ: D8/C8C2 ⊆ Aut C4322+C4.1D864,52
C4.2D8 = SD64φ: D8/C8C2 ⊆ Aut C4322C4.2D864,53
C4.3D8 = Q64φ: D8/C8C2 ⊆ Aut C4642-C4.3D864,54
C4.4D8 = C4.4D8φ: D8/C8C2 ⊆ Aut C432C4.4D864,167
C4.5D8 = C82Q8φ: D8/C8C2 ⊆ Aut C464C4.5D864,181
C4.6D8 = C2×D16φ: D8/C8C2 ⊆ Aut C432C4.6D864,186
C4.7D8 = C2×SD32φ: D8/C8C2 ⊆ Aut C432C4.7D864,187
C4.8D8 = C2×Q32φ: D8/C8C2 ⊆ Aut C464C4.8D864,188
C4.9D8 = C4.D8φ: D8/D4C2 ⊆ Aut C432C4.9D864,12
C4.10D8 = C4.10D8φ: D8/D4C2 ⊆ Aut C464C4.10D864,13
C4.11D8 = M5(2)⋊C2φ: D8/D4C2 ⊆ Aut C4164+C4.11D864,42
C4.12D8 = C8.17D4φ: D8/D4C2 ⊆ Aut C4324-C4.12D864,43
C4.13D8 = D4⋊Q8φ: D8/D4C2 ⊆ Aut C432C4.13D864,155
C4.14D8 = C16⋊C22φ: D8/D4C2 ⊆ Aut C4164+C4.14D864,190
C4.15D8 = Q32⋊C2φ: D8/D4C2 ⊆ Aut C4324-C4.15D864,191
C4.16D8 = D4⋊C8central extension (φ=1)32C4.16D864,6
C4.17D8 = C81C8central extension (φ=1)64C4.17D864,16
C4.18D8 = D8.C4central extension (φ=1)322C4.18D864,40
C4.19D8 = C8.4Q8central extension (φ=1)322C4.19D864,49
C4.20D8 = C4○D16central extension (φ=1)322C4.20D864,189

׿
×
𝔽