p-group, metacyclic, nilpotent (class 5), monomial
Aliases: D32, C32⋊1C2, C4.1D8, C8.5D4, D16⋊1C2, C2.3D16, C16.2C22, 2-Sylow(PGL(2,31)), sometimes denoted D64 or Dih32 or Dih64, SmallGroup(64,52)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D32
G = < a,b | a32=b2=1, bab=a-1 >
Character table of D32
class | 1 | 2A | 2B | 2C | 4 | 8A | 8B | 16A | 16B | 16C | 16D | 32A | 32B | 32C | 32D | 32E | 32F | 32G | 32H | |
size | 1 | 1 | 16 | 16 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ7 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ8 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | -ζ165+ζ163 | ζ165-ζ163 | ζ1615-ζ169 | ζ1615-ζ169 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ1615+ζ169 | orthogonal lifted from D16 |
ρ9 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | ζ165-ζ163 | -ζ165+ζ163 | -ζ1615+ζ169 | -ζ1615+ζ169 | -ζ165+ζ163 | ζ1615-ζ169 | ζ1615-ζ169 | orthogonal lifted from D16 |
ρ10 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | √2 | -√2 | -ζ1615+ζ169 | -ζ1615+ζ169 | ζ1615-ζ169 | -ζ165+ζ163 | -ζ165+ζ163 | ζ1615-ζ169 | ζ165-ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ11 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ1615-ζ169 | ζ1615-ζ169 | -ζ1615+ζ169 | ζ165-ζ163 | ζ165-ζ163 | -ζ1615+ζ169 | -ζ165+ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ12 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | ζ3214-ζ322 | -ζ3210+ζ326 | ζ3210-ζ326 | -ζ3214+ζ322 | ζ3211-ζ325 | -ζ3211+ζ325 | ζ3213-ζ323 | -ζ3225+ζ3223 | ζ3225-ζ3223 | -ζ3213+ζ323 | -ζ3215+ζ32 | ζ3215-ζ32 | orthogonal faithful |
ρ13 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3214+ζ322 | -ζ3210+ζ326 | -ζ3215+ζ32 | ζ3215-ζ32 | ζ3225-ζ3223 | -ζ3211+ζ325 | ζ3211-ζ325 | -ζ3225+ζ3223 | -ζ3213+ζ323 | ζ3213-ζ323 | orthogonal faithful |
ρ14 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3214-ζ322 | ζ3210-ζ326 | -ζ3225+ζ3223 | ζ3225-ζ3223 | -ζ3215+ζ32 | ζ3213-ζ323 | -ζ3213+ζ323 | ζ3215-ζ32 | -ζ3211+ζ325 | ζ3211-ζ325 | orthogonal faithful |
ρ15 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | -ζ3214+ζ322 | ζ3210-ζ326 | -ζ3210+ζ326 | ζ3214-ζ322 | ζ3213-ζ323 | -ζ3213+ζ323 | -ζ3211+ζ325 | -ζ3215+ζ32 | ζ3215-ζ32 | ζ3211-ζ325 | ζ3225-ζ3223 | -ζ3225+ζ3223 | orthogonal faithful |
ρ16 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | ζ3214-ζ322 | -ζ3210+ζ326 | ζ3210-ζ326 | -ζ3214+ζ322 | -ζ3211+ζ325 | ζ3211-ζ325 | -ζ3213+ζ323 | ζ3225-ζ3223 | -ζ3225+ζ3223 | ζ3213-ζ323 | ζ3215-ζ32 | -ζ3215+ζ32 | orthogonal faithful |
ρ17 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3214-ζ322 | ζ3210-ζ326 | ζ3225-ζ3223 | -ζ3225+ζ3223 | ζ3215-ζ32 | -ζ3213+ζ323 | ζ3213-ζ323 | -ζ3215+ζ32 | ζ3211-ζ325 | -ζ3211+ζ325 | orthogonal faithful |
ρ18 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | -ζ3214+ζ322 | ζ3210-ζ326 | -ζ3210+ζ326 | ζ3214-ζ322 | -ζ3213+ζ323 | ζ3213-ζ323 | ζ3211-ζ325 | ζ3215-ζ32 | -ζ3215+ζ32 | -ζ3211+ζ325 | -ζ3225+ζ3223 | ζ3225-ζ3223 | orthogonal faithful |
ρ19 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3214+ζ322 | -ζ3210+ζ326 | ζ3215-ζ32 | -ζ3215+ζ32 | -ζ3225+ζ3223 | ζ3211-ζ325 | -ζ3211+ζ325 | ζ3225-ζ3223 | ζ3213-ζ323 | -ζ3213+ζ323 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18)]])
D32 is a maximal subgroup of
SD128
D32p: D64 D96 D160 D224 ...
D16p⋊C2: C4○D32 C32⋊C22 C3⋊D32 C5⋊D32 C7⋊D32 ...
D32 is a maximal quotient of
C32⋊3C4
D32p: D64 D96 D160 D224 ...
C8p.D4: D16⋊2C4 SD128 Q128 C3⋊D32 C5⋊D32 C7⋊D32 ...
Matrix representation of D32 ►in GL2(𝔽31) generated by
0 | 30 |
1 | 9 |
9 | 18 |
30 | 22 |
G:=sub<GL(2,GF(31))| [0,1,30,9],[9,30,18,22] >;
D32 in GAP, Magma, Sage, TeX
D_{32}
% in TeX
G:=Group("D32");
// GroupNames label
G:=SmallGroup(64,52);
// by ID
G=gap.SmallGroup(64,52);
# by ID
G:=PCGroup([6,-2,2,-2,-2,-2,-2,73,218,116,122,579,297,165,1444,730,88]);
// Polycyclic
G:=Group<a,b|a^32=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D32 in TeX
Character table of D32 in TeX