p-group, metacyclic, nilpotent (class 5), monomial
Aliases: Q64, Dic16, C32.C2, C8.7D4, C4.3D8, Q32.C2, C2.5D16, C16.4C22, 2-Sylow(SL(2,31)), SmallGroup(64,54)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for Q64
G = < a,b | a32=1, b2=a16, bab-1=a-1 >
Character table of Q64
class | 1 | 2 | 4A | 4B | 4C | 8A | 8B | 16A | 16B | 16C | 16D | 32A | 32B | 32C | 32D | 32E | 32F | 32G | 32H | |
size | 1 | 1 | 2 | 16 | 16 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ7 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ8 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -ζ167+ζ16 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ9 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ10 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ11 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ167-ζ16 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ12 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | ζ3214-ζ322 | -ζ3210+ζ326 | ζ3210-ζ326 | -ζ3214+ζ322 | ζ3211-ζ325 | -ζ3211+ζ325 | ζ3213-ζ323 | -ζ3225+ζ3223 | ζ3225-ζ3223 | -ζ3213+ζ323 | -ζ3215+ζ32 | ζ3215-ζ32 | symplectic faithful, Schur index 2 |
ρ13 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3214+ζ322 | -ζ3210+ζ326 | -ζ3215+ζ32 | ζ3215-ζ32 | ζ3225-ζ3223 | -ζ3211+ζ325 | ζ3211-ζ325 | -ζ3225+ζ3223 | -ζ3213+ζ323 | ζ3213-ζ323 | symplectic faithful, Schur index 2 |
ρ14 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3214-ζ322 | ζ3210-ζ326 | -ζ3225+ζ3223 | ζ3225-ζ3223 | -ζ3215+ζ32 | ζ3213-ζ323 | -ζ3213+ζ323 | ζ3215-ζ32 | -ζ3211+ζ325 | ζ3211-ζ325 | symplectic faithful, Schur index 2 |
ρ15 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | -ζ3214+ζ322 | ζ3210-ζ326 | -ζ3210+ζ326 | ζ3214-ζ322 | ζ3213-ζ323 | -ζ3213+ζ323 | -ζ3211+ζ325 | -ζ3215+ζ32 | ζ3215-ζ32 | ζ3211-ζ325 | ζ3225-ζ3223 | -ζ3225+ζ3223 | symplectic faithful, Schur index 2 |
ρ16 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | ζ3214-ζ322 | -ζ3210+ζ326 | ζ3210-ζ326 | -ζ3214+ζ322 | -ζ3211+ζ325 | ζ3211-ζ325 | -ζ3213+ζ323 | ζ3225-ζ3223 | -ζ3225+ζ3223 | ζ3213-ζ323 | ζ3215-ζ32 | -ζ3215+ζ32 | symplectic faithful, Schur index 2 |
ρ17 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3214-ζ322 | ζ3210-ζ326 | ζ3225-ζ3223 | -ζ3225+ζ3223 | ζ3215-ζ32 | -ζ3213+ζ323 | ζ3213-ζ323 | -ζ3215+ζ32 | ζ3211-ζ325 | -ζ3211+ζ325 | symplectic faithful, Schur index 2 |
ρ18 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | -ζ3214+ζ322 | ζ3210-ζ326 | -ζ3210+ζ326 | ζ3214-ζ322 | -ζ3213+ζ323 | ζ3213-ζ323 | ζ3211-ζ325 | ζ3215-ζ32 | -ζ3215+ζ32 | -ζ3211+ζ325 | -ζ3225+ζ3223 | ζ3225-ζ3223 | symplectic faithful, Schur index 2 |
ρ19 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3214+ζ322 | -ζ3210+ζ326 | ζ3215-ζ32 | -ζ3215+ζ32 | -ζ3225+ζ3223 | ζ3211-ζ325 | -ζ3211+ζ325 | ζ3225-ζ3223 | ζ3213-ζ323 | -ζ3213+ζ323 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 53 17 37)(2 52 18 36)(3 51 19 35)(4 50 20 34)(5 49 21 33)(6 48 22 64)(7 47 23 63)(8 46 24 62)(9 45 25 61)(10 44 26 60)(11 43 27 59)(12 42 28 58)(13 41 29 57)(14 40 30 56)(15 39 31 55)(16 38 32 54)
G:=sub<Sym(64)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,53,17,37)(2,52,18,36)(3,51,19,35)(4,50,20,34)(5,49,21,33)(6,48,22,64)(7,47,23,63)(8,46,24,62)(9,45,25,61)(10,44,26,60)(11,43,27,59)(12,42,28,58)(13,41,29,57)(14,40,30,56)(15,39,31,55)(16,38,32,54)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,53,17,37)(2,52,18,36)(3,51,19,35)(4,50,20,34)(5,49,21,33)(6,48,22,64)(7,47,23,63)(8,46,24,62)(9,45,25,61)(10,44,26,60)(11,43,27,59)(12,42,28,58)(13,41,29,57)(14,40,30,56)(15,39,31,55)(16,38,32,54) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,53,17,37),(2,52,18,36),(3,51,19,35),(4,50,20,34),(5,49,21,33),(6,48,22,64),(7,47,23,63),(8,46,24,62),(9,45,25,61),(10,44,26,60),(11,43,27,59),(12,42,28,58),(13,41,29,57),(14,40,30,56),(15,39,31,55),(16,38,32,54)]])
Q64 is a maximal subgroup of
Dic16p: Q128 Dic48 Dic80 Dic112 ...
C4p.D8: SD128 C4○D32 Q64⋊C2 C3⋊Q64 C5⋊Q64 C7⋊Q64 ...
Q64 is a maximal quotient of
C32⋊3C4
C16.D2p: Q32⋊2C4 Dic48 C3⋊Q64 Dic80 C5⋊Q64 Dic112 C7⋊Q64 ...
Matrix representation of Q64 ►in GL2(𝔽31) generated by
16 | 12 |
12 | 11 |
0 | 30 |
1 | 0 |
G:=sub<GL(2,GF(31))| [16,12,12,11],[0,1,30,0] >;
Q64 in GAP, Magma, Sage, TeX
Q_{64}
% in TeX
G:=Group("Q64");
// GroupNames label
G:=SmallGroup(64,54);
// by ID
G=gap.SmallGroup(64,54);
# by ID
G:=PCGroup([6,-2,2,-2,-2,-2,-2,192,73,199,218,116,122,579,297,165,1444,730,88]);
// Polycyclic
G:=Group<a,b|a^32=1,b^2=a^16,b*a*b^-1=a^-1>;
// generators/relations
Export
Subgroup lattice of Q64 in TeX
Character table of Q64 in TeX