p-group, metacyclic, nilpotent (class 5), monomial
Aliases: SD64, C32⋊2C2, D16.C2, C8.6D4, C4.2D8, Q32⋊1C2, C2.4D16, C16.3C22, 2-Sylow(GL(2,47)), also known as the quasi-dihedral group QD64, SmallGroup(64,53)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for SD64
G = < a,b | a32=b2=1, bab=a15 >
Character table of SD64
class | 1 | 2A | 2B | 4A | 4B | 8A | 8B | 16A | 16B | 16C | 16D | 32A | 32B | 32C | 32D | 32E | 32F | 32G | 32H | |
size | 1 | 1 | 16 | 2 | 16 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 2 | 0 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ7 | 2 | 2 | 0 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ8 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -ζ167+ζ16 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | ζ165-ζ163 | ζ167-ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ9 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -ζ165+ζ163 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | ζ165-ζ163 | ζ167-ζ16 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ10 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | ζ165-ζ163 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | ζ167-ζ16 | -ζ165+ζ163 | -ζ167+ζ16 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ11 | 2 | 2 | 0 | -2 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | ζ167-ζ16 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | ζ165-ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ12 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | -ζ3214+ζ322 | ζ3210-ζ326 | -ζ3210+ζ326 | ζ3214-ζ322 | ζ3211+ζ325 | ζ3227+ζ3221 | ζ3229+ζ3219 | ζ3225+ζ3223 | ζ329+ζ327 | ζ3213+ζ323 | ζ3231+ζ3217 | ζ3215+ζ32 | complex faithful |
ρ13 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | ζ3214-ζ322 | -ζ3210+ζ326 | ζ3210-ζ326 | -ζ3214+ζ322 | ζ3229+ζ3219 | ζ3213+ζ323 | ζ3227+ζ3221 | ζ3231+ζ3217 | ζ3215+ζ32 | ζ3211+ζ325 | ζ329+ζ327 | ζ3225+ζ3223 | complex faithful |
ρ14 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3214+ζ322 | -ζ3210+ζ326 | ζ3225+ζ3223 | ζ329+ζ327 | ζ3231+ζ3217 | ζ3229+ζ3219 | ζ3213+ζ323 | ζ3215+ζ32 | ζ3227+ζ3221 | ζ3211+ζ325 | complex faithful |
ρ15 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | ζ3214-ζ322 | -ζ3210+ζ326 | ζ3210-ζ326 | -ζ3214+ζ322 | ζ3213+ζ323 | ζ3229+ζ3219 | ζ3211+ζ325 | ζ3215+ζ32 | ζ3231+ζ3217 | ζ3227+ζ3221 | ζ3225+ζ3223 | ζ329+ζ327 | complex faithful |
ρ16 | 2 | -2 | 0 | 0 | 0 | -√2 | √2 | -ζ3214+ζ322 | ζ3210-ζ326 | -ζ3210+ζ326 | ζ3214-ζ322 | ζ3227+ζ3221 | ζ3211+ζ325 | ζ3213+ζ323 | ζ329+ζ327 | ζ3225+ζ3223 | ζ3229+ζ3219 | ζ3215+ζ32 | ζ3231+ζ3217 | complex faithful |
ρ17 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3214-ζ322 | ζ3210-ζ326 | ζ3215+ζ32 | ζ3231+ζ3217 | ζ3225+ζ3223 | ζ3211+ζ325 | ζ3227+ζ3221 | ζ329+ζ327 | ζ3229+ζ3219 | ζ3213+ζ323 | complex faithful |
ρ18 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | ζ3210-ζ326 | ζ3214-ζ322 | -ζ3214+ζ322 | -ζ3210+ζ326 | ζ329+ζ327 | ζ3225+ζ3223 | ζ3215+ζ32 | ζ3213+ζ323 | ζ3229+ζ3219 | ζ3231+ζ3217 | ζ3211+ζ325 | ζ3227+ζ3221 | complex faithful |
ρ19 | 2 | -2 | 0 | 0 | 0 | √2 | -√2 | -ζ3210+ζ326 | -ζ3214+ζ322 | ζ3214-ζ322 | ζ3210-ζ326 | ζ3231+ζ3217 | ζ3215+ζ32 | ζ329+ζ327 | ζ3227+ζ3221 | ζ3211+ζ325 | ζ3225+ζ3223 | ζ3213+ζ323 | ζ3229+ζ3219 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 16)(3 31)(4 14)(5 29)(6 12)(7 27)(8 10)(9 25)(11 23)(13 21)(15 19)(18 32)(20 30)(22 28)(24 26)
G:=sub<Sym(32)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,16)(3,31)(4,14)(5,29)(6,12)(7,27)(8,10)(9,25)(11,23)(13,21)(15,19)(18,32)(20,30)(22,28)(24,26)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,16)(3,31)(4,14)(5,29)(6,12)(7,27)(8,10)(9,25)(11,23)(13,21)(15,19)(18,32)(20,30)(22,28)(24,26) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,16),(3,31),(4,14),(5,29),(6,12),(7,27),(8,10),(9,25),(11,23),(13,21),(15,19),(18,32),(20,30),(22,28),(24,26)]])
SD64 is a maximal subgroup of
C4p.D8: C4○D32 C32⋊C22 Q64⋊C2 C32⋊S3 D16.S3 C3⋊SD64 C160⋊C2 D16.D5 ...
SD64 is a maximal quotient of
C32⋊4C4
C16.D2p: D16⋊2C4 Q32⋊2C4 C32⋊S3 D16.S3 C3⋊SD64 C160⋊C2 D16.D5 C5⋊SD64 ...
Matrix representation of SD64 ►in GL2(𝔽47) generated by
0 | 1 |
1 | 43 |
1 | 43 |
0 | 46 |
G:=sub<GL(2,GF(47))| [0,1,1,43],[1,0,43,46] >;
SD64 in GAP, Magma, Sage, TeX
{\rm SD}_{64}
% in TeX
G:=Group("SD64");
// GroupNames label
G:=SmallGroup(64,53);
// by ID
G=gap.SmallGroup(64,53);
# by ID
G:=PCGroup([6,-2,2,-2,-2,-2,-2,192,73,218,116,122,579,297,165,1444,730,88]);
// Polycyclic
G:=Group<a,b|a^32=b^2=1,b*a*b=a^15>;
// generators/relations
Export
Subgroup lattice of SD64 in TeX
Character table of SD64 in TeX