Copied to
clipboard

G = C9.A4order 108 = 22·33

The central extension by C9 of A4

metabelian, soluble, monomial, A-group

Aliases: C9.A4, C22⋊C27, (C2×C6).C9, (C2×C18).C3, C3.(C3.A4), SmallGroup(108,3)

Series: Derived Chief Lower central Upper central

C1C22 — C9.A4
C1C22C2×C6C2×C18 — C9.A4
C22 — C9.A4
C1C9

Generators and relations for C9.A4
 G = < a,b,c,d | a9=b2=c2=1, d3=a, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >

3C2
3C6
3C18
4C27

Smallest permutation representation of C9.A4
On 54 points
Generators in S54
(1 4 7 10 13 16 19 22 25)(2 5 8 11 14 17 20 23 26)(3 6 9 12 15 18 21 24 27)(28 31 34 37 40 43 46 49 52)(29 32 35 38 41 44 47 50 53)(30 33 36 39 42 45 48 51 54)
(2 45)(3 46)(5 48)(6 49)(8 51)(9 52)(11 54)(12 28)(14 30)(15 31)(17 33)(18 34)(20 36)(21 37)(23 39)(24 40)(26 42)(27 43)
(1 44)(3 46)(4 47)(6 49)(7 50)(9 52)(10 53)(12 28)(13 29)(15 31)(16 32)(18 34)(19 35)(21 37)(22 38)(24 40)(25 41)(27 43)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54), (2,45)(3,46)(5,48)(6,49)(8,51)(9,52)(11,54)(12,28)(14,30)(15,31)(17,33)(18,34)(20,36)(21,37)(23,39)(24,40)(26,42)(27,43), (1,44)(3,46)(4,47)(6,49)(7,50)(9,52)(10,53)(12,28)(13,29)(15,31)(16,32)(18,34)(19,35)(21,37)(22,38)(24,40)(25,41)(27,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,4,7,10,13,16,19,22,25)(2,5,8,11,14,17,20,23,26)(3,6,9,12,15,18,21,24,27)(28,31,34,37,40,43,46,49,52)(29,32,35,38,41,44,47,50,53)(30,33,36,39,42,45,48,51,54), (2,45)(3,46)(5,48)(6,49)(8,51)(9,52)(11,54)(12,28)(14,30)(15,31)(17,33)(18,34)(20,36)(21,37)(23,39)(24,40)(26,42)(27,43), (1,44)(3,46)(4,47)(6,49)(7,50)(9,52)(10,53)(12,28)(13,29)(15,31)(16,32)(18,34)(19,35)(21,37)(22,38)(24,40)(25,41)(27,43), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,4,7,10,13,16,19,22,25),(2,5,8,11,14,17,20,23,26),(3,6,9,12,15,18,21,24,27),(28,31,34,37,40,43,46,49,52),(29,32,35,38,41,44,47,50,53),(30,33,36,39,42,45,48,51,54)], [(2,45),(3,46),(5,48),(6,49),(8,51),(9,52),(11,54),(12,28),(14,30),(15,31),(17,33),(18,34),(20,36),(21,37),(23,39),(24,40),(26,42),(27,43)], [(1,44),(3,46),(4,47),(6,49),(7,50),(9,52),(10,53),(12,28),(13,29),(15,31),(16,32),(18,34),(19,35),(21,37),(22,38),(24,40),(25,41),(27,43)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])

C9.A4 is a maximal subgroup of   C9.S4  A4×C27  C27⋊A4  C62.C9  C42⋊C27  C24⋊C27
C9.A4 is a maximal quotient of   Q8⋊C27  C27.A4  C42⋊C27  C24⋊C27

36 conjugacy classes

class 1  2 3A3B6A6B9A···9F18A···18F27A···27R
order1233669···918···1827···27
size1311331···13···34···4

36 irreducible representations

dim1111333
type++
imageC1C3C9C27A4C3.A4C9.A4
kernelC9.A4C2×C18C2×C6C22C9C3C1
# reps12618126

Matrix representation of C9.A4 in GL3(𝔽109) generated by

2700
0270
0027
,
100
221080
270108
,
10800
01080
8201
,
221070
65871
11820
G:=sub<GL(3,GF(109))| [27,0,0,0,27,0,0,0,27],[1,22,27,0,108,0,0,0,108],[108,0,82,0,108,0,0,0,1],[22,65,11,107,87,82,0,1,0] >;

C9.A4 in GAP, Magma, Sage, TeX

C_9.A_4
% in TeX

G:=Group("C9.A4");
// GroupNames label

G:=SmallGroup(108,3);
// by ID

G=gap.SmallGroup(108,3);
# by ID

G:=PCGroup([5,-3,-3,-3,-2,2,15,36,1083,2029]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^2=c^2=1,d^3=a,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C9.A4 in TeX

׿
×
𝔽