extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C2×C4) = D4⋊C4 | φ: C2×C4/C4 → C2 ⊆ Aut C4 | 16 | | C4.1(C2xC4) | 32,9 |
C4.2(C2×C4) = Q8⋊C4 | φ: C2×C4/C4 → C2 ⊆ Aut C4 | 32 | | C4.2(C2xC4) | 32,10 |
C4.3(C2×C4) = C4≀C2 | φ: C2×C4/C4 → C2 ⊆ Aut C4 | 8 | 2 | C4.3(C2xC4) | 32,11 |
C4.4(C2×C4) = C4×Q8 | φ: C2×C4/C4 → C2 ⊆ Aut C4 | 32 | | C4.4(C2xC4) | 32,26 |
C4.5(C2×C4) = C8○D4 | φ: C2×C4/C4 → C2 ⊆ Aut C4 | 16 | 2 | C4.5(C2xC4) | 32,38 |
C4.6(C2×C4) = C4.Q8 | φ: C2×C4/C22 → C2 ⊆ Aut C4 | 32 | | C4.6(C2xC4) | 32,13 |
C4.7(C2×C4) = C2.D8 | φ: C2×C4/C22 → C2 ⊆ Aut C4 | 32 | | C4.7(C2xC4) | 32,14 |
C4.8(C2×C4) = C8.C4 | φ: C2×C4/C22 → C2 ⊆ Aut C4 | 16 | 2 | C4.8(C2xC4) | 32,15 |
C4.9(C2×C4) = C42⋊C2 | φ: C2×C4/C22 → C2 ⊆ Aut C4 | 16 | | C4.9(C2xC4) | 32,24 |
C4.10(C2×C4) = C2×M4(2) | φ: C2×C4/C22 → C2 ⊆ Aut C4 | 16 | | C4.10(C2xC4) | 32,37 |
C4.11(C2×C4) = C8⋊C4 | central extension (φ=1) | 32 | | C4.11(C2xC4) | 32,4 |
C4.12(C2×C4) = M5(2) | central extension (φ=1) | 16 | 2 | C4.12(C2xC4) | 32,17 |