Extensions 1→N→G→Q→1 with N=C3×D4 and Q=C2

Direct product G=N×Q with N=C3×D4 and Q=C2
dρLabelID
C6×D424C6xD448,45

Semidirect products G=N:Q with N=C3×D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1C2 = D4⋊S3φ: C2/C1C2 ⊆ Out C3×D4244+(C3xD4):1C248,15
(C3×D4)⋊2C2 = S3×D4φ: C2/C1C2 ⊆ Out C3×D4124+(C3xD4):2C248,38
(C3×D4)⋊3C2 = D42S3φ: C2/C1C2 ⊆ Out C3×D4244-(C3xD4):3C248,39
(C3×D4)⋊4C2 = C3×D8φ: C2/C1C2 ⊆ Out C3×D4242(C3xD4):4C248,25
(C3×D4)⋊5C2 = C3×C4○D4φ: trivial image242(C3xD4):5C248,47

Non-split extensions G=N.Q with N=C3×D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D4).1C2 = D4.S3φ: C2/C1C2 ⊆ Out C3×D4244-(C3xD4).1C248,16
(C3×D4).2C2 = C3×SD16φ: C2/C1C2 ⊆ Out C3×D4242(C3xD4).2C248,26

׿
×
𝔽