Extensions 1→N→G→Q→1 with N=D4⋊C4 and Q=C4

Direct product G=N×Q with N=D4⋊C4 and Q=C4
dρLabelID
C4×D4⋊C464C4xD4:C4128,492

Semidirect products G=N:Q with N=D4⋊C4 and Q=C4
extensionφ:Q→Out NdρLabelID
D4⋊C41C4 = C2.(C87D4)φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4:1C4128,666
D4⋊C42C4 = C42.428D4φ: C4/C2C2 ⊆ Out D4⋊C432D4:C4:2C4128,669
D4⋊C43C4 = C2.(C4×D8)φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4:3C4128,594
D4⋊C44C4 = D4⋊C4⋊C4φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4:4C4128,657
D4⋊C45C4 = D4⋊(C4⋊C4)φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4:5C4128,596
D4⋊C46C4 = M4(2).42D4φ: C4/C2C2 ⊆ Out D4⋊C432D4:C4:6C4128,598
D4⋊C47C4 = C4.67(C4×D4)φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4:7C4128,658
D4⋊C48C4 = M4(2).24D4φ: C4/C2C2 ⊆ Out D4⋊C432D4:C4:8C4128,661
D4⋊C49C4 = D4⋊C42φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4:9C4128,494
D4⋊C410C4 = D4.3C42φ: C4/C2C2 ⊆ Out D4⋊C432D4:C4:10C4128,497
D4⋊C411C4 = C2.(C82D4)φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4:11C4128,668
D4⋊C412C4 = C42.107D4φ: C4/C2C2 ⊆ Out D4⋊C432D4:C4:12C4128,670
D4⋊C413C4 = Q8.C42φ: trivial image32D4:C4:13C4128,496

Non-split extensions G=N.Q with N=D4⋊C4 and Q=C4
extensionφ:Q→Out NdρLabelID
D4⋊C4.1C4 = C86D8φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.1C4128,321
D4⋊C4.2C4 = C89SD16φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.2C4128,322
D4⋊C4.3C4 = C89D8φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.3C4128,313
D4⋊C4.4C4 = D4.M4(2)φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.4C4128,317
D4⋊C4.5C4 = Q82M4(2)φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.5C4128,320
D4⋊C4.6C4 = C812SD16φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.6C4128,314
D4⋊C4.7C4 = C815SD16φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.7C4128,315
D4⋊C4.8C4 = D42M4(2)φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.8C4128,318
D4⋊C4.9C4 = SD16⋊C8φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.9C4128,310
D4⋊C4.10C4 = D85C8φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.10C4128,312
D4⋊C4.11C4 = C8⋊M4(2)φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.11C4128,324
D4⋊C4.12C4 = C83M4(2)φ: C4/C2C2 ⊆ Out D4⋊C464D4:C4.12C4128,326
D4⋊C4.13C4 = C8×D8φ: trivial image64D4:C4.13C4128,307
D4⋊C4.14C4 = C8×SD16φ: trivial image64D4:C4.14C4128,308

׿
×
𝔽