Copied to
clipboard

G = C23.486C24order 128 = 27

203rd central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.486C24, C22.2682+ 1+4, C2.8Q82, C4⋊C422Q8, C2.44(D43Q8), (C2×C42).580C22, (C22×C4).847C23, C22.121(C22×Q8), (C22×Q8).144C22, C2.30(C22.32C24), C2.60(C22.45C24), C23.65C23.62C2, C2.C42.220C22, C23.67C23.45C2, C23.81C23.21C2, C23.63C23.31C2, C23.78C23.11C2, C2.32(C23.37C23), (C4×C4⋊C4).73C2, (C2×C4).63(C2×Q8), (C2×C4).400(C4○D4), (C2×C4⋊C4).332C22, C22.362(C2×C4○D4), SmallGroup(128,1318)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.486C24
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C23.486C24
C1C23 — C23.486C24
C1C23 — C23.486C24
C1C23 — C23.486C24

Generators and relations for C23.486C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=a, e2=f2=ca=ac, g2=b, ab=ba, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 356 in 206 conjugacy classes, 108 normal (22 characteristic)
C1, C2 [×3], C2 [×4], C4 [×24], C22 [×3], C22 [×4], C2×C4 [×18], C2×C4 [×36], Q8 [×8], C23, C42 [×7], C4⋊C4 [×8], C4⋊C4 [×14], C22×C4 [×3], C22×C4 [×12], C2×Q8 [×9], C2.C42 [×2], C2.C42 [×14], C2×C42, C2×C42 [×4], C2×C4⋊C4 [×2], C2×C4⋊C4 [×10], C22×Q8 [×2], C4×C4⋊C4 [×2], C23.63C23 [×4], C23.65C23 [×2], C23.67C23, C23.67C23 [×2], C23.78C23, C23.78C23 [×2], C23.81C23, C23.486C24
Quotients: C1, C2 [×15], C22 [×35], Q8 [×8], C23 [×15], C2×Q8 [×12], C4○D4 [×6], C24, C22×Q8 [×2], C2×C4○D4 [×3], 2+ 1+4 [×2], C23.37C23 [×2], C22.32C24, C22.45C24, D43Q8 [×2], Q82, C23.486C24

Smallest permutation representation of C23.486C24
Regular action on 128 points
Generators in S128
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)(65 67)(66 68)(69 71)(70 72)(73 75)(74 76)(77 79)(78 80)(81 83)(82 84)(85 87)(86 88)(89 91)(90 92)(93 95)(94 96)(97 99)(98 100)(101 103)(102 104)(105 107)(106 108)(109 111)(110 112)(113 115)(114 116)(117 119)(118 120)(121 123)(122 124)(125 127)(126 128)
(1 9)(2 10)(3 11)(4 12)(5 71)(6 72)(7 69)(8 70)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 85)(26 86)(27 87)(28 88)(29 89)(30 90)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 103)(42 104)(43 101)(44 102)(45 107)(46 108)(47 105)(48 106)(49 111)(50 112)(51 109)(52 110)(53 115)(54 116)(55 113)(56 114)(57 119)(58 120)(59 117)(60 118)(61 123)(62 124)(63 121)(64 122)(65 126)(66 127)(67 128)(68 125)
(1 101)(2 102)(3 103)(4 104)(5 100)(6 97)(7 98)(8 99)(9 43)(10 44)(11 41)(12 42)(13 47)(14 48)(15 45)(16 46)(17 51)(18 52)(19 49)(20 50)(21 55)(22 56)(23 53)(24 54)(25 59)(26 60)(27 57)(28 58)(29 63)(30 64)(31 61)(32 62)(33 68)(34 65)(35 66)(36 67)(37 72)(38 69)(39 70)(40 71)(73 105)(74 106)(75 107)(76 108)(77 109)(78 110)(79 111)(80 112)(81 113)(82 114)(83 115)(84 116)(85 117)(86 118)(87 119)(88 120)(89 121)(90 122)(91 123)(92 124)(93 125)(94 126)(95 127)(96 128)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 119 103 85)(2 118 104 88)(3 117 101 87)(4 120 102 86)(5 114 98 84)(6 113 99 83)(7 116 100 82)(8 115 97 81)(9 57 41 25)(10 60 42 28)(11 59 43 27)(12 58 44 26)(13 61 45 29)(14 64 46 32)(15 63 47 31)(16 62 48 30)(17 66 49 33)(18 65 50 36)(19 68 51 35)(20 67 52 34)(21 70 53 37)(22 69 54 40)(23 72 55 39)(24 71 56 38)(73 123 107 89)(74 122 108 92)(75 121 105 91)(76 124 106 90)(77 127 111 93)(78 126 112 96)(79 125 109 95)(80 128 110 94)
(1 111 103 77)(2 50 104 18)(3 109 101 79)(4 52 102 20)(5 32 98 64)(6 89 99 123)(7 30 100 62)(8 91 97 121)(9 49 41 17)(10 112 42 78)(11 51 43 19)(12 110 44 80)(13 53 45 21)(14 116 46 82)(15 55 47 23)(16 114 48 84)(22 74 54 108)(24 76 56 106)(25 35 57 68)(26 96 58 126)(27 33 59 66)(28 94 60 128)(29 39 61 72)(31 37 63 70)(34 118 67 88)(36 120 65 86)(38 122 71 92)(40 124 69 90)(73 115 107 81)(75 113 105 83)(85 95 119 125)(87 93 117 127)
(1 13 9 73)(2 16 10 76)(3 15 11 75)(4 14 12 74)(5 126 71 65)(6 125 72 68)(7 128 69 67)(8 127 70 66)(17 81 77 21)(18 84 78 24)(19 83 79 23)(20 82 80 22)(25 89 85 29)(26 92 86 32)(27 91 87 31)(28 90 88 30)(33 97 93 37)(34 100 94 40)(35 99 95 39)(36 98 96 38)(41 107 103 45)(42 106 104 48)(43 105 101 47)(44 108 102 46)(49 115 111 53)(50 114 112 56)(51 113 109 55)(52 116 110 54)(57 123 119 61)(58 122 120 64)(59 121 117 63)(60 124 118 62)

G:=sub<Sym(128)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,9)(2,10)(3,11)(4,12)(5,71)(6,72)(7,69)(8,70)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,103)(42,104)(43,101)(44,102)(45,107)(46,108)(47,105)(48,106)(49,111)(50,112)(51,109)(52,110)(53,115)(54,116)(55,113)(56,114)(57,119)(58,120)(59,117)(60,118)(61,123)(62,124)(63,121)(64,122)(65,126)(66,127)(67,128)(68,125), (1,101)(2,102)(3,103)(4,104)(5,100)(6,97)(7,98)(8,99)(9,43)(10,44)(11,41)(12,42)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(21,55)(22,56)(23,53)(24,54)(25,59)(26,60)(27,57)(28,58)(29,63)(30,64)(31,61)(32,62)(33,68)(34,65)(35,66)(36,67)(37,72)(38,69)(39,70)(40,71)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122)(91,123)(92,124)(93,125)(94,126)(95,127)(96,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,119,103,85)(2,118,104,88)(3,117,101,87)(4,120,102,86)(5,114,98,84)(6,113,99,83)(7,116,100,82)(8,115,97,81)(9,57,41,25)(10,60,42,28)(11,59,43,27)(12,58,44,26)(13,61,45,29)(14,64,46,32)(15,63,47,31)(16,62,48,30)(17,66,49,33)(18,65,50,36)(19,68,51,35)(20,67,52,34)(21,70,53,37)(22,69,54,40)(23,72,55,39)(24,71,56,38)(73,123,107,89)(74,122,108,92)(75,121,105,91)(76,124,106,90)(77,127,111,93)(78,126,112,96)(79,125,109,95)(80,128,110,94), (1,111,103,77)(2,50,104,18)(3,109,101,79)(4,52,102,20)(5,32,98,64)(6,89,99,123)(7,30,100,62)(8,91,97,121)(9,49,41,17)(10,112,42,78)(11,51,43,19)(12,110,44,80)(13,53,45,21)(14,116,46,82)(15,55,47,23)(16,114,48,84)(22,74,54,108)(24,76,56,106)(25,35,57,68)(26,96,58,126)(27,33,59,66)(28,94,60,128)(29,39,61,72)(31,37,63,70)(34,118,67,88)(36,120,65,86)(38,122,71,92)(40,124,69,90)(73,115,107,81)(75,113,105,83)(85,95,119,125)(87,93,117,127), (1,13,9,73)(2,16,10,76)(3,15,11,75)(4,14,12,74)(5,126,71,65)(6,125,72,68)(7,128,69,67)(8,127,70,66)(17,81,77,21)(18,84,78,24)(19,83,79,23)(20,82,80,22)(25,89,85,29)(26,92,86,32)(27,91,87,31)(28,90,88,30)(33,97,93,37)(34,100,94,40)(35,99,95,39)(36,98,96,38)(41,107,103,45)(42,106,104,48)(43,105,101,47)(44,108,102,46)(49,115,111,53)(50,114,112,56)(51,113,109,55)(52,116,110,54)(57,123,119,61)(58,122,120,64)(59,121,117,63)(60,124,118,62)>;

G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128), (1,9)(2,10)(3,11)(4,12)(5,71)(6,72)(7,69)(8,70)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,85)(26,86)(27,87)(28,88)(29,89)(30,90)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,103)(42,104)(43,101)(44,102)(45,107)(46,108)(47,105)(48,106)(49,111)(50,112)(51,109)(52,110)(53,115)(54,116)(55,113)(56,114)(57,119)(58,120)(59,117)(60,118)(61,123)(62,124)(63,121)(64,122)(65,126)(66,127)(67,128)(68,125), (1,101)(2,102)(3,103)(4,104)(5,100)(6,97)(7,98)(8,99)(9,43)(10,44)(11,41)(12,42)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(21,55)(22,56)(23,53)(24,54)(25,59)(26,60)(27,57)(28,58)(29,63)(30,64)(31,61)(32,62)(33,68)(34,65)(35,66)(36,67)(37,72)(38,69)(39,70)(40,71)(73,105)(74,106)(75,107)(76,108)(77,109)(78,110)(79,111)(80,112)(81,113)(82,114)(83,115)(84,116)(85,117)(86,118)(87,119)(88,120)(89,121)(90,122)(91,123)(92,124)(93,125)(94,126)(95,127)(96,128), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,119,103,85)(2,118,104,88)(3,117,101,87)(4,120,102,86)(5,114,98,84)(6,113,99,83)(7,116,100,82)(8,115,97,81)(9,57,41,25)(10,60,42,28)(11,59,43,27)(12,58,44,26)(13,61,45,29)(14,64,46,32)(15,63,47,31)(16,62,48,30)(17,66,49,33)(18,65,50,36)(19,68,51,35)(20,67,52,34)(21,70,53,37)(22,69,54,40)(23,72,55,39)(24,71,56,38)(73,123,107,89)(74,122,108,92)(75,121,105,91)(76,124,106,90)(77,127,111,93)(78,126,112,96)(79,125,109,95)(80,128,110,94), (1,111,103,77)(2,50,104,18)(3,109,101,79)(4,52,102,20)(5,32,98,64)(6,89,99,123)(7,30,100,62)(8,91,97,121)(9,49,41,17)(10,112,42,78)(11,51,43,19)(12,110,44,80)(13,53,45,21)(14,116,46,82)(15,55,47,23)(16,114,48,84)(22,74,54,108)(24,76,56,106)(25,35,57,68)(26,96,58,126)(27,33,59,66)(28,94,60,128)(29,39,61,72)(31,37,63,70)(34,118,67,88)(36,120,65,86)(38,122,71,92)(40,124,69,90)(73,115,107,81)(75,113,105,83)(85,95,119,125)(87,93,117,127), (1,13,9,73)(2,16,10,76)(3,15,11,75)(4,14,12,74)(5,126,71,65)(6,125,72,68)(7,128,69,67)(8,127,70,66)(17,81,77,21)(18,84,78,24)(19,83,79,23)(20,82,80,22)(25,89,85,29)(26,92,86,32)(27,91,87,31)(28,90,88,30)(33,97,93,37)(34,100,94,40)(35,99,95,39)(36,98,96,38)(41,107,103,45)(42,106,104,48)(43,105,101,47)(44,108,102,46)(49,115,111,53)(50,114,112,56)(51,113,109,55)(52,116,110,54)(57,123,119,61)(58,122,120,64)(59,121,117,63)(60,124,118,62) );

G=PermutationGroup([(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64),(65,67),(66,68),(69,71),(70,72),(73,75),(74,76),(77,79),(78,80),(81,83),(82,84),(85,87),(86,88),(89,91),(90,92),(93,95),(94,96),(97,99),(98,100),(101,103),(102,104),(105,107),(106,108),(109,111),(110,112),(113,115),(114,116),(117,119),(118,120),(121,123),(122,124),(125,127),(126,128)], [(1,9),(2,10),(3,11),(4,12),(5,71),(6,72),(7,69),(8,70),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,85),(26,86),(27,87),(28,88),(29,89),(30,90),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,103),(42,104),(43,101),(44,102),(45,107),(46,108),(47,105),(48,106),(49,111),(50,112),(51,109),(52,110),(53,115),(54,116),(55,113),(56,114),(57,119),(58,120),(59,117),(60,118),(61,123),(62,124),(63,121),(64,122),(65,126),(66,127),(67,128),(68,125)], [(1,101),(2,102),(3,103),(4,104),(5,100),(6,97),(7,98),(8,99),(9,43),(10,44),(11,41),(12,42),(13,47),(14,48),(15,45),(16,46),(17,51),(18,52),(19,49),(20,50),(21,55),(22,56),(23,53),(24,54),(25,59),(26,60),(27,57),(28,58),(29,63),(30,64),(31,61),(32,62),(33,68),(34,65),(35,66),(36,67),(37,72),(38,69),(39,70),(40,71),(73,105),(74,106),(75,107),(76,108),(77,109),(78,110),(79,111),(80,112),(81,113),(82,114),(83,115),(84,116),(85,117),(86,118),(87,119),(88,120),(89,121),(90,122),(91,123),(92,124),(93,125),(94,126),(95,127),(96,128)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,119,103,85),(2,118,104,88),(3,117,101,87),(4,120,102,86),(5,114,98,84),(6,113,99,83),(7,116,100,82),(8,115,97,81),(9,57,41,25),(10,60,42,28),(11,59,43,27),(12,58,44,26),(13,61,45,29),(14,64,46,32),(15,63,47,31),(16,62,48,30),(17,66,49,33),(18,65,50,36),(19,68,51,35),(20,67,52,34),(21,70,53,37),(22,69,54,40),(23,72,55,39),(24,71,56,38),(73,123,107,89),(74,122,108,92),(75,121,105,91),(76,124,106,90),(77,127,111,93),(78,126,112,96),(79,125,109,95),(80,128,110,94)], [(1,111,103,77),(2,50,104,18),(3,109,101,79),(4,52,102,20),(5,32,98,64),(6,89,99,123),(7,30,100,62),(8,91,97,121),(9,49,41,17),(10,112,42,78),(11,51,43,19),(12,110,44,80),(13,53,45,21),(14,116,46,82),(15,55,47,23),(16,114,48,84),(22,74,54,108),(24,76,56,106),(25,35,57,68),(26,96,58,126),(27,33,59,66),(28,94,60,128),(29,39,61,72),(31,37,63,70),(34,118,67,88),(36,120,65,86),(38,122,71,92),(40,124,69,90),(73,115,107,81),(75,113,105,83),(85,95,119,125),(87,93,117,127)], [(1,13,9,73),(2,16,10,76),(3,15,11,75),(4,14,12,74),(5,126,71,65),(6,125,72,68),(7,128,69,67),(8,127,70,66),(17,81,77,21),(18,84,78,24),(19,83,79,23),(20,82,80,22),(25,89,85,29),(26,92,86,32),(27,91,87,31),(28,90,88,30),(33,97,93,37),(34,100,94,40),(35,99,95,39),(36,98,96,38),(41,107,103,45),(42,106,104,48),(43,105,101,47),(44,108,102,46),(49,115,111,53),(50,114,112,56),(51,113,109,55),(52,116,110,54),(57,123,119,61),(58,122,120,64),(59,121,117,63),(60,124,118,62)])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4Z4AA4AB4AC4AD
order12···24···44···44444
size11···12···24···48888

38 irreducible representations

dim1111111224
type+++++++-+
imageC1C2C2C2C2C2C2Q8C4○D42+ 1+4
kernelC23.486C24C4×C4⋊C4C23.63C23C23.65C23C23.67C23C23.78C23C23.81C23C4⋊C4C2×C4C22
# reps12423318122

Matrix representation of C23.486C24 in GL6(𝔽5)

100000
010000
004000
000400
000010
000001
,
400000
040000
001000
000100
000010
000001
,
400000
040000
001000
000100
000040
000004
,
420000
010000
002000
001300
000010
000001
,
210000
030000
001100
003400
000020
000033
,
130000
140000
003000
000300
000012
000044
,
300000
030000
002200
001300
000010
000001

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,2,1,0,0,0,0,0,0,2,1,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,1,3,0,0,0,0,0,0,1,3,0,0,0,0,1,4,0,0,0,0,0,0,2,3,0,0,0,0,0,3],[1,1,0,0,0,0,3,4,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,4,0,0,0,0,2,4],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,1,0,0,0,0,2,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C23.486C24 in GAP, Magma, Sage, TeX

C_2^3._{486}C_2^4
% in TeX

G:=Group("C2^3.486C2^4");
// GroupNames label

G:=SmallGroup(128,1318);
// by ID

G=gap.SmallGroup(128,1318);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,568,758,723,436,675,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=a,e^2=f^2=c*a=a*c,g^2=b,a*b=b*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽