extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C2×Q8) = C42.96D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).1(C2xQ8) | 128,532 |
(C2×C4).2(C2×Q8) = C42.97D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).2(C2xQ8) | 128,533 |
(C2×C4).3(C2×Q8) = (C2×D4).24Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).3(C2xQ8) | 128,544 |
(C2×C4).4(C2×Q8) = C8○D4⋊C4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).4(C2xQ8) | 128,546 |
(C2×C4).5(C2×Q8) = C4○D4.4Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).5(C2xQ8) | 128,547 |
(C2×C4).6(C2×Q8) = C4○D4.5Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).6(C2xQ8) | 128,548 |
(C2×C4).7(C2×Q8) = C24.21D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).7(C2xQ8) | 128,588 |
(C2×C4).8(C2×Q8) = C4.10D4⋊2C4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).8(C2xQ8) | 128,589 |
(C2×C4).9(C2×Q8) = C4≀C2⋊C4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).9(C2xQ8) | 128,591 |
(C2×C4).10(C2×Q8) = C42⋊9(C2×C4) | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).10(C2xQ8) | 128,592 |
(C2×C4).11(C2×Q8) = M4(2).41D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).11(C2xQ8) | 128,593 |
(C2×C4).12(C2×Q8) = (C2×D4).Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).12(C2xQ8) | 128,600 |
(C2×C4).13(C2×Q8) = M4(2)⋊8Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).13(C2xQ8) | 128,729 |
(C2×C4).14(C2×Q8) = C42.128D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).14(C2xQ8) | 128,730 |
(C2×C4).15(C2×Q8) = (C2×D4)⋊2Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).15(C2xQ8) | 128,759 |
(C2×C4).16(C2×Q8) = (C2×Q8)⋊2Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).16(C2xQ8) | 128,760 |
(C2×C4).17(C2×Q8) = C42.8D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).17(C2xQ8) | 128,763 |
(C2×C4).18(C2×Q8) = M4(2)⋊Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).18(C2xQ8) | 128,792 |
(C2×C4).19(C2×Q8) = C42⋊3Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).19(C2xQ8) | 128,793 |
(C2×C4).20(C2×Q8) = M4(2).12D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).20(C2xQ8) | 128,795 |
(C2×C4).21(C2×Q8) = M4(2).13D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).21(C2xQ8) | 128,796 |
(C2×C4).22(C2×Q8) = M4(2).Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).22(C2xQ8) | 128,821 |
(C2×C4).23(C2×Q8) = M4(2).2Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).23(C2xQ8) | 128,822 |
(C2×C4).24(C2×Q8) = C42.10D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).24(C2xQ8) | 128,830 |
(C2×C4).25(C2×Q8) = C24.252C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).25(C2xQ8) | 128,1149 |
(C2×C4).26(C2×Q8) = C23.323C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).26(C2xQ8) | 128,1155 |
(C2×C4).27(C2×Q8) = C23.329C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).27(C2xQ8) | 128,1161 |
(C2×C4).28(C2×Q8) = C24.568C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).28(C2xQ8) | 128,1172 |
(C2×C4).29(C2×Q8) = C23.346C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).29(C2xQ8) | 128,1178 |
(C2×C4).30(C2×Q8) = C23.349C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).30(C2xQ8) | 128,1181 |
(C2×C4).31(C2×Q8) = C23.350C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).31(C2xQ8) | 128,1182 |
(C2×C4).32(C2×Q8) = C23.351C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).32(C2xQ8) | 128,1183 |
(C2×C4).33(C2×Q8) = C23.353C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).33(C2xQ8) | 128,1185 |
(C2×C4).34(C2×Q8) = C23.362C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).34(C2xQ8) | 128,1194 |
(C2×C4).35(C2×Q8) = C24.285C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).35(C2xQ8) | 128,1197 |
(C2×C4).36(C2×Q8) = C24.572C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).36(C2xQ8) | 128,1205 |
(C2×C4).37(C2×Q8) = C24.300C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).37(C2xQ8) | 128,1219 |
(C2×C4).38(C2×Q8) = C23.392C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).38(C2xQ8) | 128,1224 |
(C2×C4).39(C2×Q8) = C23.397C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).39(C2xQ8) | 128,1229 |
(C2×C4).40(C2×Q8) = C23.402C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).40(C2xQ8) | 128,1234 |
(C2×C4).41(C2×Q8) = C23.405C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).41(C2xQ8) | 128,1237 |
(C2×C4).42(C2×Q8) = C23.406C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).42(C2xQ8) | 128,1238 |
(C2×C4).43(C2×Q8) = C23.407C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).43(C2xQ8) | 128,1239 |
(C2×C4).44(C2×Q8) = C23.408C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).44(C2xQ8) | 128,1240 |
(C2×C4).45(C2×Q8) = C23.409C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).45(C2xQ8) | 128,1241 |
(C2×C4).46(C2×Q8) = C23.411C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).46(C2xQ8) | 128,1243 |
(C2×C4).47(C2×Q8) = C23.420C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).47(C2xQ8) | 128,1252 |
(C2×C4).48(C2×Q8) = C23.422C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).48(C2xQ8) | 128,1254 |
(C2×C4).49(C2×Q8) = C42.169D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).49(C2xQ8) | 128,1278 |
(C2×C4).50(C2×Q8) = C23.449C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).50(C2xQ8) | 128,1281 |
(C2×C4).51(C2×Q8) = C42⋊7Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).51(C2xQ8) | 128,1283 |
(C2×C4).52(C2×Q8) = C42.35Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).52(C2xQ8) | 128,1284 |
(C2×C4).53(C2×Q8) = C24.583C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).53(C2xQ8) | 128,1296 |
(C2×C4).54(C2×Q8) = C42.174D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).54(C2xQ8) | 128,1297 |
(C2×C4).55(C2×Q8) = C42.176D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).55(C2xQ8) | 128,1299 |
(C2×C4).56(C2×Q8) = C42.177D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).56(C2xQ8) | 128,1300 |
(C2×C4).57(C2×Q8) = C23.479C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).57(C2xQ8) | 128,1311 |
(C2×C4).58(C2×Q8) = C42.179D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).58(C2xQ8) | 128,1313 |
(C2×C4).59(C2×Q8) = C42.180D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).59(C2xQ8) | 128,1314 |
(C2×C4).60(C2×Q8) = C23.483C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).60(C2xQ8) | 128,1315 |
(C2×C4).61(C2×Q8) = C42.181D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).61(C2xQ8) | 128,1316 |
(C2×C4).62(C2×Q8) = C23.485C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).62(C2xQ8) | 128,1317 |
(C2×C4).63(C2×Q8) = C23.486C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).63(C2xQ8) | 128,1318 |
(C2×C4).64(C2×Q8) = C23.488C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).64(C2xQ8) | 128,1320 |
(C2×C4).65(C2×Q8) = C23.490C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).65(C2xQ8) | 128,1322 |
(C2×C4).66(C2×Q8) = C24.385C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).66(C2xQ8) | 128,1409 |
(C2×C4).67(C2×Q8) = C23.583C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).67(C2xQ8) | 128,1415 |
(C2×C4).68(C2×Q8) = C23.592C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).68(C2xQ8) | 128,1424 |
(C2×C4).69(C2×Q8) = C24.408C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).69(C2xQ8) | 128,1436 |
(C2×C4).70(C2×Q8) = C23.613C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).70(C2xQ8) | 128,1445 |
(C2×C4).71(C2×Q8) = C23.620C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).71(C2xQ8) | 128,1452 |
(C2×C4).72(C2×Q8) = C23.626C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).72(C2xQ8) | 128,1458 |
(C2×C4).73(C2×Q8) = C24.421C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).73(C2xQ8) | 128,1461 |
(C2×C4).74(C2×Q8) = C23.632C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).74(C2xQ8) | 128,1464 |
(C2×C4).75(C2×Q8) = C23.634C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).75(C2xQ8) | 128,1466 |
(C2×C4).76(C2×Q8) = C24.428C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).76(C2xQ8) | 128,1474 |
(C2×C4).77(C2×Q8) = C24.434C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).77(C2xQ8) | 128,1480 |
(C2×C4).78(C2×Q8) = C23.655C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).78(C2xQ8) | 128,1487 |
(C2×C4).79(C2×Q8) = C23.663C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).79(C2xQ8) | 128,1495 |
(C2×C4).80(C2×Q8) = C23.668C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).80(C2xQ8) | 128,1500 |
(C2×C4).81(C2×Q8) = C23.674C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).81(C2xQ8) | 128,1506 |
(C2×C4).82(C2×Q8) = C24.448C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).82(C2xQ8) | 128,1512 |
(C2×C4).83(C2×Q8) = C24.450C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).83(C2xQ8) | 128,1516 |
(C2×C4).84(C2×Q8) = C23.688C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).84(C2xQ8) | 128,1520 |
(C2×C4).85(C2×Q8) = C24.454C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).85(C2xQ8) | 128,1522 |
(C2×C4).86(C2×Q8) = C23.691C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).86(C2xQ8) | 128,1523 |
(C2×C4).87(C2×Q8) = C23.692C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).87(C2xQ8) | 128,1524 |
(C2×C4).88(C2×Q8) = C23.699C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).88(C2xQ8) | 128,1531 |
(C2×C4).89(C2×Q8) = C23.702C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).89(C2xQ8) | 128,1534 |
(C2×C4).90(C2×Q8) = C24.456C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).90(C2xQ8) | 128,1536 |
(C2×C4).91(C2×Q8) = C23.705C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).91(C2xQ8) | 128,1537 |
(C2×C4).92(C2×Q8) = C23.706C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).92(C2xQ8) | 128,1538 |
(C2×C4).93(C2×Q8) = C23.707C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).93(C2xQ8) | 128,1539 |
(C2×C4).94(C2×Q8) = C23.709C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).94(C2xQ8) | 128,1541 |
(C2×C4).95(C2×Q8) = C23.711C24 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).95(C2xQ8) | 128,1543 |
(C2×C4).96(C2×Q8) = C4○D4.7Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).96(C2xQ8) | 128,1644 |
(C2×C4).97(C2×Q8) = C4○D4.8Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).97(C2xQ8) | 128,1645 |
(C2×C4).98(C2×Q8) = M4(2).29C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).98(C2xQ8) | 128,1648 |
(C2×C4).99(C2×Q8) = C42.219D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).99(C2xQ8) | 128,1809 |
(C2×C4).100(C2×Q8) = C42.220D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).100(C2xQ8) | 128,1810 |
(C2×C4).101(C2×Q8) = C42.448D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).101(C2xQ8) | 128,1811 |
(C2×C4).102(C2×Q8) = C42.449D4 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).102(C2xQ8) | 128,1812 |
(C2×C4).103(C2×Q8) = C42.20C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).103(C2xQ8) | 128,1813 |
(C2×C4).104(C2×Q8) = C42.21C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).104(C2xQ8) | 128,1814 |
(C2×C4).105(C2×Q8) = C42.22C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).105(C2xQ8) | 128,1815 |
(C2×C4).106(C2×Q8) = C42.23C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).106(C2xQ8) | 128,1816 |
(C2×C4).107(C2×Q8) = M4(2)⋊5Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).107(C2xQ8) | 128,1897 |
(C2×C4).108(C2×Q8) = M4(2)⋊6Q8 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).108(C2xQ8) | 128,1898 |
(C2×C4).109(C2×Q8) = C22.91C25 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).109(C2xQ8) | 128,2234 |
(C2×C4).110(C2×Q8) = C22.93C25 | φ: C2×Q8/C4 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).110(C2xQ8) | 128,2236 |
(C2×C4).111(C2×Q8) = C2×C4.9C42 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).111(C2xQ8) | 128,462 |
(C2×C4).112(C2×Q8) = C2×C22.C42 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).112(C2xQ8) | 128,473 |
(C2×C4).113(C2×Q8) = C23.15C42 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).113(C2xQ8) | 128,474 |
(C2×C4).114(C2×Q8) = C2×M4(2)⋊4C4 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).114(C2xQ8) | 128,475 |
(C2×C4).115(C2×Q8) = C8.(C4⋊C4) | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).115(C2xQ8) | 128,565 |
(C2×C4).116(C2×Q8) = M4(2).5Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).116(C2xQ8) | 128,683 |
(C2×C4).117(C2×Q8) = M4(2).6Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).117(C2xQ8) | 128,684 |
(C2×C4).118(C2×Q8) = M4(2).27D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 32 | 4 | (C2xC4).118(C2xQ8) | 128,685 |
(C2×C4).119(C2×Q8) = C42.32Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).119(C2xQ8) | 128,834 |
(C2×C4).120(C2×Q8) = C2×C23.81C23 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).120(C2xQ8) | 128,1123 |
(C2×C4).121(C2×Q8) = C2×C23.83C23 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).121(C2xQ8) | 128,1126 |
(C2×C4).122(C2×Q8) = C42⋊5Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).122(C2xQ8) | 128,1131 |
(C2×C4).123(C2×Q8) = C42.34Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).123(C2xQ8) | 128,1134 |
(C2×C4).124(C2×Q8) = C24.569C23 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).124(C2xQ8) | 128,1174 |
(C2×C4).125(C2×Q8) = C42⋊6Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).125(C2xQ8) | 128,1282 |
(C2×C4).126(C2×Q8) = C42.36Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).126(C2xQ8) | 128,1302 |
(C2×C4).127(C2×Q8) = C42⋊8Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).127(C2xQ8) | 128,1337 |
(C2×C4).128(C2×Q8) = C42.38Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).128(C2xQ8) | 128,1338 |
(C2×C4).129(C2×Q8) = C23.527C24 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).129(C2xQ8) | 128,1359 |
(C2×C4).130(C2×Q8) = C42.187D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).130(C2xQ8) | 128,1360 |
(C2×C4).131(C2×Q8) = C42.188D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).131(C2xQ8) | 128,1361 |
(C2×C4).132(C2×Q8) = C23.546C24 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).132(C2xQ8) | 128,1378 |
(C2×C4).133(C2×Q8) = C42.39Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).133(C2xQ8) | 128,1379 |
(C2×C4).134(C2×Q8) = C23.559C24 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).134(C2xQ8) | 128,1391 |
(C2×C4).135(C2×Q8) = C42⋊10Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).135(C2xQ8) | 128,1392 |
(C2×C4).136(C2×Q8) = C42⋊11Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).136(C2xQ8) | 128,1398 |
(C2×C4).137(C2×Q8) = C23.741C24 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).137(C2xQ8) | 128,1573 |
(C2×C4).138(C2×Q8) = C42⋊12Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).138(C2xQ8) | 128,1575 |
(C2×C4).139(C2×Q8) = C42⋊13Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).139(C2xQ8) | 128,1576 |
(C2×C4).140(C2×Q8) = C42.40Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 128 | | (C2xC4).140(C2xQ8) | 128,1577 |
(C2×C4).141(C2×Q8) = C2×M4(2)⋊C4 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).141(C2xQ8) | 128,1642 |
(C2×C4).142(C2×Q8) = C24.100D4 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).142(C2xQ8) | 128,1643 |
(C2×C4).143(C2×Q8) = M4(2)⋊3Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).143(C2xQ8) | 128,1895 |
(C2×C4).144(C2×Q8) = M4(2)⋊4Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).144(C2xQ8) | 128,1896 |
(C2×C4).145(C2×Q8) = C22.47C25 | φ: C2×Q8/C22 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).145(C2xQ8) | 128,2190 |
(C2×C4).146(C2×Q8) = C2×C8⋊2C8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).146(C2xQ8) | 128,294 |
(C2×C4).147(C2×Q8) = C2×C8⋊1C8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).147(C2xQ8) | 128,295 |
(C2×C4).148(C2×Q8) = C42.42Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).148(C2xQ8) | 128,296 |
(C2×C4).149(C2×Q8) = M4(2)⋊1C8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).149(C2xQ8) | 128,297 |
(C2×C4).150(C2×Q8) = C8⋊8M4(2) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).150(C2xQ8) | 128,298 |
(C2×C4).151(C2×Q8) = C8⋊7M4(2) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).151(C2xQ8) | 128,299 |
(C2×C4).152(C2×Q8) = C42.43Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).152(C2xQ8) | 128,300 |
(C2×C4).153(C2×Q8) = C8⋊1M4(2) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).153(C2xQ8) | 128,301 |
(C2×C4).154(C2×Q8) = C42.90D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).154(C2xQ8) | 128,302 |
(C2×C4).155(C2×Q8) = C42.91D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).155(C2xQ8) | 128,303 |
(C2×C4).156(C2×Q8) = C42.Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).156(C2xQ8) | 128,304 |
(C2×C4).157(C2×Q8) = C42.92D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).157(C2xQ8) | 128,305 |
(C2×C4).158(C2×Q8) = C42.21Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).158(C2xQ8) | 128,306 |
(C2×C4).159(C2×Q8) = C2×C23.63C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).159(C2xQ8) | 128,1020 |
(C2×C4).160(C2×Q8) = C42⋊14Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).160(C2xQ8) | 128,1027 |
(C2×C4).161(C2×Q8) = C23.211C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).161(C2xQ8) | 128,1061 |
(C2×C4).162(C2×Q8) = C42.33Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).162(C2xQ8) | 128,1062 |
(C2×C4).163(C2×Q8) = C42⋊4Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).163(C2xQ8) | 128,1063 |
(C2×C4).164(C2×Q8) = C24.567C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).164(C2xQ8) | 128,1170 |
(C2×C4).165(C2×Q8) = C24.584C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).165(C2xQ8) | 128,1301 |
(C2×C4).166(C2×Q8) = C24.355C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).166(C2xQ8) | 128,1339 |
(C2×C4).167(C2×Q8) = C23.508C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).167(C2xQ8) | 128,1340 |
(C2×C4).168(C2×Q8) = C42⋊9Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).168(C2xQ8) | 128,1344 |
(C2×C4).169(C2×Q8) = C24.379C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).169(C2xQ8) | 128,1397 |
(C2×C4).170(C2×Q8) = C23.567C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).170(C2xQ8) | 128,1399 |
(C2×C4).171(C2×Q8) = C42.439D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).171(C2xQ8) | 128,1583 |
(C2×C4).172(C2×Q8) = C24.599C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).172(C2xQ8) | 128,1587 |
(C2×C4).173(C2×Q8) = C42.440D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).173(C2xQ8) | 128,1589 |
(C2×C4).174(C2×Q8) = C42⋊18Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).174(C2xQ8) | 128,1594 |
(C2×C4).175(C2×Q8) = C42⋊15Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).175(C2xQ8) | 128,1595 |
(C2×C4).176(C2×Q8) = C43.18C2 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).176(C2xQ8) | 128,1596 |
(C2×C4).177(C2×Q8) = C2×C42⋊6C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).177(C2xQ8) | 128,464 |
(C2×C4).178(C2×Q8) = C24.63D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).178(C2xQ8) | 128,465 |
(C2×C4).179(C2×Q8) = C2×C22.4Q16 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).179(C2xQ8) | 128,466 |
(C2×C4).180(C2×Q8) = C24.132D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).180(C2xQ8) | 128,467 |
(C2×C4).181(C2×Q8) = C24.152D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).181(C2xQ8) | 128,468 |
(C2×C4).182(C2×Q8) = C8.14C42 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).182(C2xQ8) | 128,504 |
(C2×C4).183(C2×Q8) = C8.5C42 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).183(C2xQ8) | 128,505 |
(C2×C4).184(C2×Q8) = C4×C4.Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).184(C2xQ8) | 128,506 |
(C2×C4).185(C2×Q8) = C4×C2.D8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).185(C2xQ8) | 128,507 |
(C2×C4).186(C2×Q8) = C8⋊C42 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).186(C2xQ8) | 128,508 |
(C2×C4).187(C2×Q8) = C24.133D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).187(C2xQ8) | 128,539 |
(C2×C4).188(C2×Q8) = C23.22D8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).188(C2xQ8) | 128,540 |
(C2×C4).189(C2×Q8) = C24.67D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).189(C2xQ8) | 128,541 |
(C2×C4).190(C2×Q8) = C42.55Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).190(C2xQ8) | 128,566 |
(C2×C4).191(C2×Q8) = C42.56Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).191(C2xQ8) | 128,567 |
(C2×C4).192(C2×Q8) = C42.24Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).192(C2xQ8) | 128,568 |
(C2×C4).193(C2×Q8) = C42.58Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).193(C2xQ8) | 128,576 |
(C2×C4).194(C2×Q8) = C42.59Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).194(C2xQ8) | 128,577 |
(C2×C4).195(C2×Q8) = C42.60Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).195(C2xQ8) | 128,578 |
(C2×C4).196(C2×Q8) = C42.26Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).196(C2xQ8) | 128,579 |
(C2×C4).197(C2×Q8) = C42.324D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).197(C2xQ8) | 128,580 |
(C2×C4).198(C2×Q8) = C42.106D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).198(C2xQ8) | 128,581 |
(C2×C4).199(C2×Q8) = C23.37D8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).199(C2xQ8) | 128,584 |
(C2×C4).200(C2×Q8) = C24.159D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).200(C2xQ8) | 128,585 |
(C2×C4).201(C2×Q8) = C24.71D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).201(C2xQ8) | 128,586 |
(C2×C4).202(C2×Q8) = C8⋊7(C4⋊C4) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).202(C2xQ8) | 128,673 |
(C2×C4).203(C2×Q8) = C8⋊5(C4⋊C4) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).203(C2xQ8) | 128,674 |
(C2×C4).204(C2×Q8) = C4.(C4×Q8) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).204(C2xQ8) | 128,675 |
(C2×C4).205(C2×Q8) = C8⋊(C4⋊C4) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).205(C2xQ8) | 128,676 |
(C2×C4).206(C2×Q8) = C42.62Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).206(C2xQ8) | 128,677 |
(C2×C4).207(C2×Q8) = C42.28Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).207(C2xQ8) | 128,678 |
(C2×C4).208(C2×Q8) = C42.29Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).208(C2xQ8) | 128,679 |
(C2×C4).209(C2×Q8) = C42.30Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).209(C2xQ8) | 128,680 |
(C2×C4).210(C2×Q8) = C42.31Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).210(C2xQ8) | 128,681 |
(C2×C4).211(C2×Q8) = C42.436D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).211(C2xQ8) | 128,722 |
(C2×C4).212(C2×Q8) = C42.437D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).212(C2xQ8) | 128,723 |
(C2×C4).213(C2×Q8) = C42.124D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).213(C2xQ8) | 128,724 |
(C2×C4).214(C2×Q8) = C42.125D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).214(C2xQ8) | 128,725 |
(C2×C4).215(C2×Q8) = C42⋊16Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).215(C2xQ8) | 128,726 |
(C2×C4).216(C2×Q8) = C42⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).216(C2xQ8) | 128,727 |
(C2×C4).217(C2×Q8) = C4⋊C4⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).217(C2xQ8) | 128,789 |
(C2×C4).218(C2×Q8) = (C2×C8)⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).218(C2xQ8) | 128,790 |
(C2×C4).219(C2×Q8) = C2.(C8⋊Q8) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).219(C2xQ8) | 128,791 |
(C2×C4).220(C2×Q8) = (C2×C8).1Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).220(C2xQ8) | 128,815 |
(C2×C4).221(C2×Q8) = C2.(C8⋊3Q8) | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).221(C2xQ8) | 128,816 |
(C2×C4).222(C2×Q8) = (C2×C8).24Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).222(C2xQ8) | 128,817 |
(C2×C4).223(C2×Q8) = C2×C42⋊8C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).223(C2xQ8) | 128,1013 |
(C2×C4).224(C2×Q8) = C2×C42⋊9C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).224(C2xQ8) | 128,1016 |
(C2×C4).225(C2×Q8) = C2×C23.65C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).225(C2xQ8) | 128,1023 |
(C2×C4).226(C2×Q8) = C4×C42.C2 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).226(C2xQ8) | 128,1037 |
(C2×C4).227(C2×Q8) = C4×C4⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).227(C2xQ8) | 128,1039 |
(C2×C4).228(C2×Q8) = C24.545C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).228(C2xQ8) | 128,1048 |
(C2×C4).229(C2×Q8) = C23.199C24 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).229(C2xQ8) | 128,1049 |
(C2×C4).230(C2×Q8) = C24.267C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).230(C2xQ8) | 128,1171 |
(C2×C4).231(C2×Q8) = C24.268C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).231(C2xQ8) | 128,1173 |
(C2×C4).232(C2×Q8) = C42.37Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).232(C2xQ8) | 128,1303 |
(C2×C4).233(C2×Q8) = C43.15C2 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).233(C2xQ8) | 128,1591 |
(C2×C4).234(C2×Q8) = C42⋊19Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).234(C2xQ8) | 128,1600 |
(C2×C4).235(C2×Q8) = C2×C42.6C22 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).235(C2xQ8) | 128,1636 |
(C2×C4).236(C2×Q8) = C42.257C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).236(C2xQ8) | 128,1637 |
(C2×C4).237(C2×Q8) = C22×C4.Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).237(C2xQ8) | 128,1639 |
(C2×C4).238(C2×Q8) = C22×C2.D8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).238(C2xQ8) | 128,1640 |
(C2×C4).239(C2×Q8) = C2×C23.25D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).239(C2xQ8) | 128,1641 |
(C2×C4).240(C2×Q8) = C22×C8.C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).240(C2xQ8) | 128,1646 |
(C2×C4).241(C2×Q8) = C2×M4(2).C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).241(C2xQ8) | 128,1647 |
(C2×C4).242(C2×Q8) = C42.286C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).242(C2xQ8) | 128,1692 |
(C2×C4).243(C2×Q8) = C42.287C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).243(C2xQ8) | 128,1693 |
(C2×C4).244(C2×Q8) = C2×C8⋊3Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).244(C2xQ8) | 128,1889 |
(C2×C4).245(C2×Q8) = C2×C8.5Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).245(C2xQ8) | 128,1890 |
(C2×C4).246(C2×Q8) = C2×C8⋊2Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).246(C2xQ8) | 128,1891 |
(C2×C4).247(C2×Q8) = C42.364D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).247(C2xQ8) | 128,1892 |
(C2×C4).248(C2×Q8) = C2×C8⋊Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).248(C2xQ8) | 128,1893 |
(C2×C4).249(C2×Q8) = C42.252D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).249(C2xQ8) | 128,1894 |
(C2×C4).250(C2×Q8) = C22×C42.C2 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).250(C2xQ8) | 128,2169 |
(C2×C4).251(C2×Q8) = C23.227C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).251(C2xQ8) | 128,1077 |
(C2×C4).252(C2×Q8) = C24.558C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).252(C2xQ8) | 128,1092 |
(C2×C4).253(C2×Q8) = C23.250C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).253(C2xQ8) | 128,1100 |
(C2×C4).254(C2×Q8) = C23.252C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).254(C2xQ8) | 128,1102 |
(C2×C4).255(C2×Q8) = C23.456C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).255(C2xQ8) | 128,1288 |
(C2×C4).256(C2×Q8) = C24.338C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).256(C2xQ8) | 128,1306 |
(C2×C4).257(C2×Q8) = C24.345C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).257(C2xQ8) | 128,1319 |
(C2×C4).258(C2×Q8) = C24.346C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).258(C2xQ8) | 128,1321 |
(C2×C4).259(C2×Q8) = C42.98D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).259(C2xQ8) | 128,534 |
(C2×C4).260(C2×Q8) = C42.99D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).260(C2xQ8) | 128,535 |
(C2×C4).261(C2×Q8) = C42.100D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).261(C2xQ8) | 128,536 |
(C2×C4).262(C2×Q8) = C42.101D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).262(C2xQ8) | 128,537 |
(C2×C4).263(C2×Q8) = C42.102D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).263(C2xQ8) | 128,538 |
(C2×C4).264(C2×Q8) = C2.(C4×D8) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).264(C2xQ8) | 128,594 |
(C2×C4).265(C2×Q8) = Q8⋊(C4⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).265(C2xQ8) | 128,595 |
(C2×C4).266(C2×Q8) = D4⋊(C4⋊C4) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).266(C2xQ8) | 128,596 |
(C2×C4).267(C2×Q8) = Q8⋊C4⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).267(C2xQ8) | 128,597 |
(C2×C4).268(C2×Q8) = M4(2).42D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).268(C2xQ8) | 128,598 |
(C2×C4).269(C2×Q8) = C2.D8⋊4C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).269(C2xQ8) | 128,650 |
(C2×C4).270(C2×Q8) = C4.Q8⋊9C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).270(C2xQ8) | 128,651 |
(C2×C4).271(C2×Q8) = C4.Q8⋊10C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).271(C2xQ8) | 128,652 |
(C2×C4).272(C2×Q8) = C2.D8⋊5C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).272(C2xQ8) | 128,653 |
(C2×C4).273(C2×Q8) = M4(2).3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).273(C2xQ8) | 128,654 |
(C2×C4).274(C2×Q8) = C42.430D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).274(C2xQ8) | 128,682 |
(C2×C4).275(C2×Q8) = M4(2)⋊7Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).275(C2xQ8) | 128,718 |
(C2×C4).276(C2×Q8) = C42.121D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).276(C2xQ8) | 128,719 |
(C2×C4).277(C2×Q8) = C42.122D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).277(C2xQ8) | 128,720 |
(C2×C4).278(C2×Q8) = C42.123D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).278(C2xQ8) | 128,721 |
(C2×C4).279(C2×Q8) = (C2×D4)⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).279(C2xQ8) | 128,755 |
(C2×C4).280(C2×Q8) = (C2×Q8)⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).280(C2xQ8) | 128,756 |
(C2×C4).281(C2×Q8) = C4⋊C4.84D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).281(C2xQ8) | 128,757 |
(C2×C4).282(C2×Q8) = C4⋊C4.85D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).282(C2xQ8) | 128,758 |
(C2×C4).283(C2×Q8) = C4⋊C4.106D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).283(C2xQ8) | 128,797 |
(C2×C4).284(C2×Q8) = (C2×Q8).8Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).284(C2xQ8) | 128,798 |
(C2×C4).285(C2×Q8) = (C2×C4).23D8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).285(C2xQ8) | 128,799 |
(C2×C4).286(C2×Q8) = (C2×C8).52D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).286(C2xQ8) | 128,800 |
(C2×C4).287(C2×Q8) = (C2×C4).26D8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).287(C2xQ8) | 128,818 |
(C2×C4).288(C2×Q8) = (C2×C4).21Q16 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).288(C2xQ8) | 128,819 |
(C2×C4).289(C2×Q8) = C4.(C4⋊Q8) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).289(C2xQ8) | 128,820 |
(C2×C4).290(C2×Q8) = (C2×C8).168D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).290(C2xQ8) | 128,824 |
(C2×C4).291(C2×Q8) = (C2×C4).27D8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).291(C2xQ8) | 128,825 |
(C2×C4).292(C2×Q8) = (C2×C8).169D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).292(C2xQ8) | 128,826 |
(C2×C4).293(C2×Q8) = (C2×C8).60D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).293(C2xQ8) | 128,827 |
(C2×C4).294(C2×Q8) = (C2×C8).170D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).294(C2xQ8) | 128,828 |
(C2×C4).295(C2×Q8) = (C2×C8).171D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).295(C2xQ8) | 128,829 |
(C2×C4).296(C2×Q8) = (C2×C4).28D8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).296(C2xQ8) | 128,831 |
(C2×C4).297(C2×Q8) = (C2×C4).23Q16 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).297(C2xQ8) | 128,832 |
(C2×C4).298(C2×Q8) = C4⋊C4.Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).298(C2xQ8) | 128,833 |
(C2×C4).299(C2×Q8) = D4×C4⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).299(C2xQ8) | 128,1080 |
(C2×C4).300(C2×Q8) = C23.231C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).300(C2xQ8) | 128,1081 |
(C2×C4).301(C2×Q8) = Q8×C4⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).301(C2xQ8) | 128,1082 |
(C2×C4).302(C2×Q8) = C23.233C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).302(C2xQ8) | 128,1083 |
(C2×C4).303(C2×Q8) = C23.237C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).303(C2xQ8) | 128,1087 |
(C2×C4).304(C2×Q8) = C23.247C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).304(C2xQ8) | 128,1097 |
(C2×C4).305(C2×Q8) = C23.251C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).305(C2xQ8) | 128,1101 |
(C2×C4).306(C2×Q8) = C23.352C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).306(C2xQ8) | 128,1184 |
(C2×C4).307(C2×Q8) = C23.354C24 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).307(C2xQ8) | 128,1186 |
(C2×C4).308(C2×Q8) = C42.166D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).308(C2xQ8) | 128,1270 |
(C2×C4).309(C2×Q8) = C42.167D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).309(C2xQ8) | 128,1274 |
(C2×C4).310(C2×Q8) = C42.173D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).310(C2xQ8) | 128,1295 |
(C2×C4).311(C2×Q8) = C42.175D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).311(C2xQ8) | 128,1298 |
(C2×C4).312(C2×Q8) = C42.178D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).312(C2xQ8) | 128,1312 |
(C2×C4).313(C2×Q8) = C42.674C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).313(C2xQ8) | 128,1638 |
(C2×C4).314(C2×Q8) = M4(2)⋊9Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).314(C2xQ8) | 128,1694 |
(C2×C4).315(C2×Q8) = Q8×M4(2) | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).315(C2xQ8) | 128,1695 |
(C2×C4).316(C2×Q8) = C2×D4⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).316(C2xQ8) | 128,1802 |
(C2×C4).317(C2×Q8) = C2×D4⋊2Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).317(C2xQ8) | 128,1803 |
(C2×C4).318(C2×Q8) = C2×D4.Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).318(C2xQ8) | 128,1804 |
(C2×C4).319(C2×Q8) = C2×Q8⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).319(C2xQ8) | 128,1805 |
(C2×C4).320(C2×Q8) = C2×C4.Q16 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).320(C2xQ8) | 128,1806 |
(C2×C4).321(C2×Q8) = C2×Q8.Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).321(C2xQ8) | 128,1807 |
(C2×C4).322(C2×Q8) = C42.447D4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).322(C2xQ8) | 128,1808 |
(C2×C4).323(C2×Q8) = C2×D4⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).323(C2xQ8) | 128,2204 |
(C2×C4).324(C2×Q8) = C2×Q8⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).324(C2xQ8) | 128,2208 |
(C2×C4).325(C2×Q8) = C2×Q82 | φ: C2×Q8/Q8 → C2 ⊆ Aut C2×C4 | 128 | | (C2xC4).325(C2xQ8) | 128,2209 |
(C2×C4).326(C2×Q8) = C2×C22.7C42 | central extension (φ=1) | 128 | | (C2xC4).326(C2xQ8) | 128,459 |
(C2×C4).327(C2×Q8) = C23.28C42 | central extension (φ=1) | 64 | | (C2xC4).327(C2xQ8) | 128,460 |
(C2×C4).328(C2×Q8) = C23.29C42 | central extension (φ=1) | 64 | | (C2xC4).328(C2xQ8) | 128,461 |
(C2×C4).329(C2×Q8) = C4×C4⋊C8 | central extension (φ=1) | 128 | | (C2xC4).329(C2xQ8) | 128,498 |
(C2×C4).330(C2×Q8) = C43.7C2 | central extension (φ=1) | 128 | | (C2xC4).330(C2xQ8) | 128,499 |
(C2×C4).331(C2×Q8) = C42.45Q8 | central extension (φ=1) | 128 | | (C2xC4).331(C2xQ8) | 128,500 |
(C2×C4).332(C2×Q8) = C8×C4⋊C4 | central extension (φ=1) | 128 | | (C2xC4).332(C2xQ8) | 128,501 |
(C2×C4).333(C2×Q8) = C4⋊C8⋊13C4 | central extension (φ=1) | 128 | | (C2xC4).333(C2xQ8) | 128,502 |
(C2×C4).334(C2×Q8) = C4⋊C8⋊14C4 | central extension (φ=1) | 128 | | (C2xC4).334(C2xQ8) | 128,503 |
(C2×C4).335(C2×Q8) = C42.425D4 | central extension (φ=1) | 64 | | (C2xC4).335(C2xQ8) | 128,529 |
(C2×C4).336(C2×Q8) = C42.95D4 | central extension (φ=1) | 64 | | (C2xC4).336(C2xQ8) | 128,530 |
(C2×C4).337(C2×Q8) = C42⋊8C8 | central extension (φ=1) | 128 | | (C2xC4).337(C2xQ8) | 128,563 |
(C2×C4).338(C2×Q8) = C42.23Q8 | central extension (φ=1) | 128 | | (C2xC4).338(C2xQ8) | 128,564 |
(C2×C4).339(C2×Q8) = C42⋊9C8 | central extension (φ=1) | 128 | | (C2xC4).339(C2xQ8) | 128,574 |
(C2×C4).340(C2×Q8) = C42.25Q8 | central extension (φ=1) | 128 | | (C2xC4).340(C2xQ8) | 128,575 |
(C2×C4).341(C2×Q8) = C23.21M4(2) | central extension (φ=1) | 64 | | (C2xC4).341(C2xQ8) | 128,582 |
(C2×C4).342(C2×Q8) = (C2×C8).195D4 | central extension (φ=1) | 64 | | (C2xC4).342(C2xQ8) | 128,583 |
(C2×C4).343(C2×Q8) = C4⋊C4⋊3C8 | central extension (φ=1) | 128 | | (C2xC4).343(C2xQ8) | 128,648 |
(C2×C4).344(C2×Q8) = (C2×C8).Q8 | central extension (φ=1) | 128 | | (C2xC4).344(C2xQ8) | 128,649 |
(C2×C4).345(C2×Q8) = C42.61Q8 | central extension (φ=1) | 128 | | (C2xC4).345(C2xQ8) | 128,671 |
(C2×C4).346(C2×Q8) = C42.27Q8 | central extension (φ=1) | 128 | | (C2xC4).346(C2xQ8) | 128,672 |
(C2×C4).347(C2×Q8) = C42.327D4 | central extension (φ=1) | 128 | | (C2xC4).347(C2xQ8) | 128,716 |
(C2×C4).348(C2×Q8) = C42.120D4 | central extension (φ=1) | 128 | | (C2xC4).348(C2xQ8) | 128,717 |
(C2×C4).349(C2×Q8) = C2×C4×C4⋊C4 | central extension (φ=1) | 128 | | (C2xC4).349(C2xQ8) | 128,1001 |
(C2×C4).350(C2×Q8) = Q8×C42 | central extension (φ=1) | 128 | | (C2xC4).350(C2xQ8) | 128,1004 |
(C2×C4).351(C2×Q8) = C23.167C24 | central extension (φ=1) | 64 | | (C2xC4).351(C2xQ8) | 128,1017 |
(C2×C4).352(C2×Q8) = C23.178C24 | central extension (φ=1) | 64 | | (C2xC4).352(C2xQ8) | 128,1028 |
(C2×C4).353(C2×Q8) = C4×C22⋊Q8 | central extension (φ=1) | 64 | | (C2xC4).353(C2xQ8) | 128,1034 |
(C2×C4).354(C2×Q8) = C42.162D4 | central extension (φ=1) | 64 | | (C2xC4).354(C2xQ8) | 128,1128 |
(C2×C4).355(C2×Q8) = C22×C4⋊C8 | central extension (φ=1) | 128 | | (C2xC4).355(C2xQ8) | 128,1634 |
(C2×C4).356(C2×Q8) = C2×C4⋊M4(2) | central extension (φ=1) | 64 | | (C2xC4).356(C2xQ8) | 128,1635 |
(C2×C4).357(C2×Q8) = Q8×C2×C8 | central extension (φ=1) | 128 | | (C2xC4).357(C2xQ8) | 128,1690 |
(C2×C4).358(C2×Q8) = C2×C8⋊4Q8 | central extension (φ=1) | 128 | | (C2xC4).358(C2xQ8) | 128,1691 |