Copied to
clipboard

G = C23.546C24order 128 = 27

263rd central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.546C24, C24.593C23, C22.2382- 1+4, C22.3212+ 1+4, (C22×C4).61Q8, C23.101(C2×Q8), C2.9(C232Q8), C23.246(C4○D4), (C22×C4).156C23, (C23×C4).142C22, C23.8Q8.42C2, C23.7Q8.60C2, C22.5(C42.C2), C22.135(C22×Q8), C23.83C2365C2, C23.81C2366C2, C2.45(C22.32C24), C2.C42.556C22, C2.45(C22.33C24), C2.22(C23.41C23), (C2×C4).132(C2×Q8), C2.19(C2×C42.C2), (C2×C4⋊C4).372C22, C22.418(C2×C4○D4), (C2×C22⋊C4).232C22, (C2×C2.C42).30C2, SmallGroup(128,1378)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.546C24
C1C2C22C23C24C2×C22⋊C4C23.8Q8 — C23.546C24
C1C23 — C23.546C24
C1C23 — C23.546C24
C1C23 — C23.546C24

Generators and relations for C23.546C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=g2=c, gag-1=ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >

Subgroups: 420 in 218 conjugacy classes, 100 normal (12 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×16], C22 [×3], C22 [×8], C22 [×12], C2×C4 [×4], C2×C4 [×52], C23, C23 [×6], C23 [×4], C22⋊C4 [×8], C4⋊C4 [×12], C22×C4 [×18], C22×C4 [×10], C24, C2.C42 [×16], C2×C22⋊C4 [×4], C2×C4⋊C4 [×12], C23×C4, C23×C4 [×2], C2×C2.C42, C23.7Q8 [×2], C23.8Q8 [×4], C23.81C23 [×4], C23.83C23 [×4], C23.546C24
Quotients: C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], C2×Q8 [×6], C4○D4 [×4], C24, C42.C2 [×4], C22×Q8, C2×C4○D4 [×2], 2+ 1+4 [×3], 2- 1+4, C2×C42.C2, C22.32C24 [×2], C22.33C24 [×2], C232Q8, C23.41C23, C23.546C24

Smallest permutation representation of C23.546C24
On 64 points
Generators in S64
(1 3)(2 4)(5 40)(6 37)(7 38)(8 39)(9 11)(10 12)(13 43)(14 44)(15 41)(16 42)(17 19)(18 20)(21 23)(22 24)(25 55)(26 56)(27 53)(28 54)(29 31)(30 32)(33 61)(34 62)(35 63)(36 64)(45 47)(46 48)(49 51)(50 52)(57 59)(58 60)
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 59 51 47)(2 32 52 20)(3 57 49 45)(4 30 50 18)(5 42 36 54)(6 15 33 27)(7 44 34 56)(8 13 35 25)(9 29 21 17)(10 58 22 46)(11 31 23 19)(12 60 24 48)(14 62 26 38)(16 64 28 40)(37 41 61 53)(39 43 63 55)
(1 55 51 43)(2 44 52 56)(3 53 49 41)(4 42 50 54)(5 32 36 20)(6 17 33 29)(7 30 34 18)(8 19 35 31)(9 25 21 13)(10 14 22 26)(11 27 23 15)(12 16 24 28)(37 47 61 59)(38 60 62 48)(39 45 63 57)(40 58 64 46)

G:=sub<Sym(64)| (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,11)(10,12)(13,43)(14,44)(15,41)(16,42)(17,19)(18,20)(21,23)(22,24)(25,55)(26,56)(27,53)(28,54)(29,31)(30,32)(33,61)(34,62)(35,63)(36,64)(45,47)(46,48)(49,51)(50,52)(57,59)(58,60), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,47)(2,32,52,20)(3,57,49,45)(4,30,50,18)(5,42,36,54)(6,15,33,27)(7,44,34,56)(8,13,35,25)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(14,62,26,38)(16,64,28,40)(37,41,61,53)(39,43,63,55), (1,55,51,43)(2,44,52,56)(3,53,49,41)(4,42,50,54)(5,32,36,20)(6,17,33,29)(7,30,34,18)(8,19,35,31)(9,25,21,13)(10,14,22,26)(11,27,23,15)(12,16,24,28)(37,47,61,59)(38,60,62,48)(39,45,63,57)(40,58,64,46)>;

G:=Group( (1,3)(2,4)(5,40)(6,37)(7,38)(8,39)(9,11)(10,12)(13,43)(14,44)(15,41)(16,42)(17,19)(18,20)(21,23)(22,24)(25,55)(26,56)(27,53)(28,54)(29,31)(30,32)(33,61)(34,62)(35,63)(36,64)(45,47)(46,48)(49,51)(50,52)(57,59)(58,60), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,47)(2,32,52,20)(3,57,49,45)(4,30,50,18)(5,42,36,54)(6,15,33,27)(7,44,34,56)(8,13,35,25)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(14,62,26,38)(16,64,28,40)(37,41,61,53)(39,43,63,55), (1,55,51,43)(2,44,52,56)(3,53,49,41)(4,42,50,54)(5,32,36,20)(6,17,33,29)(7,30,34,18)(8,19,35,31)(9,25,21,13)(10,14,22,26)(11,27,23,15)(12,16,24,28)(37,47,61,59)(38,60,62,48)(39,45,63,57)(40,58,64,46) );

G=PermutationGroup([(1,3),(2,4),(5,40),(6,37),(7,38),(8,39),(9,11),(10,12),(13,43),(14,44),(15,41),(16,42),(17,19),(18,20),(21,23),(22,24),(25,55),(26,56),(27,53),(28,54),(29,31),(30,32),(33,61),(34,62),(35,63),(36,64),(45,47),(46,48),(49,51),(50,52),(57,59),(58,60)], [(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,59,51,47),(2,32,52,20),(3,57,49,45),(4,30,50,18),(5,42,36,54),(6,15,33,27),(7,44,34,56),(8,13,35,25),(9,29,21,17),(10,58,22,46),(11,31,23,19),(12,60,24,48),(14,62,26,38),(16,64,28,40),(37,41,61,53),(39,43,63,55)], [(1,55,51,43),(2,44,52,56),(3,53,49,41),(4,42,50,54),(5,32,36,20),(6,17,33,29),(7,30,34,18),(8,19,35,31),(9,25,21,13),(10,14,22,26),(11,27,23,15),(12,16,24,28),(37,47,61,59),(38,60,62,48),(39,45,63,57),(40,58,64,46)])

32 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4L4M···4T
order12···222224···44···4
size11···122224···48···8

32 irreducible representations

dim1111112244
type++++++-+-
imageC1C2C2C2C2C2Q8C4○D42+ 1+42- 1+4
kernelC23.546C24C2×C2.C42C23.7Q8C23.8Q8C23.81C23C23.83C23C22×C4C23C22C22
# reps1124444831

Matrix representation of C23.546C24 in GL8(𝔽5)

10000000
01000000
00100000
00010000
00001000
00000400
00000010
00000004
,
10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00100000
00010000
00001000
00000100
00000010
00000001
,
40000000
04000000
00400000
00040000
00001000
00000100
00000010
00000001
,
14000000
24000000
00300000
00030000
00000030
00000003
00002000
00000200
,
14000000
24000000
00320000
00120000
00000010
00000001
00001000
00000100
,
32000000
02000000
00100000
00240000
00000100
00001000
00000001
00000010

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,2,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0],[1,2,0,0,0,0,0,0,4,4,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[3,0,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0] >;

C23.546C24 in GAP, Magma, Sage, TeX

C_2^3._{546}C_2^4
% in TeX

G:=Group("C2^3.546C2^4");
// GroupNames label

G:=SmallGroup(128,1378);
// by ID

G=gap.SmallGroup(128,1378);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,232,758,723,184,185]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=g^2=c,g*a*g^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽