Copied to
clipboard

G = C23.649C24order 128 = 27

366th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.79C23, C23.649C24, C22.4222+ 1+4, C425C429C2, C23.90(C4○D4), C232D4.28C2, C23.Q879C2, C23.34D455C2, C23.10D499C2, (C23×C4).161C22, (C2×C42).690C22, (C22×C4).570C23, C23.8Q8126C2, C23.11D4108C2, C23.23D4101C2, C24.3C2291C2, (C22×D4).266C22, C24.C22157C2, C2.82(C22.32C24), C23.83C23100C2, C2.26(C22.54C24), C2.C42.353C22, C2.101(C22.45C24), C2.53(C22.34C24), C2.95(C22.47C24), (C2×C4).450(C4○D4), (C2×C4⋊C4).460C22, C22.510(C2×C4○D4), (C2×C22⋊C4).65C22, SmallGroup(128,1481)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.649C24
C1C2C22C23C24C23×C4C23.23D4 — C23.649C24
C1C23 — C23.649C24
C1C23 — C23.649C24
C1C23 — C23.649C24

Generators and relations for C23.649C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=e2=g2=1, d2=c, f2=ba=ab, ac=ca, ede=ad=da, geg=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, gdg=abd, fg=gf >

Subgroups: 564 in 249 conjugacy classes, 88 normal (82 characteristic)
C1, C2 [×7], C2 [×5], C4 [×13], C22 [×7], C22 [×27], C2×C4 [×2], C2×C4 [×43], D4 [×12], C23, C23 [×4], C23 [×19], C42 [×2], C22⋊C4 [×15], C4⋊C4 [×4], C22×C4 [×12], C22×C4 [×7], C2×D4 [×14], C24 [×3], C2.C42 [×12], C2×C42, C2×C22⋊C4 [×13], C2×C4⋊C4 [×4], C23×C4 [×2], C22×D4 [×3], C23.34D4, C425C4, C23.8Q8, C23.23D4 [×4], C24.C22, C24.3C22, C232D4, C23.10D4, C23.Q8, C23.11D4 [×2], C23.83C23, C23.649C24
Quotients: C1, C2 [×15], C22 [×35], C23 [×15], C4○D4 [×6], C24, C2×C4○D4 [×3], 2+ 1+4 [×4], C22.32C24 [×2], C22.34C24, C22.45C24 [×2], C22.47C24, C22.54C24, C23.649C24

Smallest permutation representation of C23.649C24
On 64 points
Generators in S64
(1 21)(2 22)(3 23)(4 24)(5 46)(6 47)(7 48)(8 45)(9 56)(10 53)(11 54)(12 55)(13 60)(14 57)(15 58)(16 59)(17 33)(18 34)(19 35)(20 36)(25 43)(26 44)(27 41)(28 42)(29 39)(30 40)(31 37)(32 38)(49 64)(50 61)(51 62)(52 63)
(1 57)(2 58)(3 59)(4 60)(5 32)(6 29)(7 30)(8 31)(9 43)(10 44)(11 41)(12 42)(13 24)(14 21)(15 22)(16 23)(17 49)(18 50)(19 51)(20 52)(25 56)(26 53)(27 54)(28 55)(33 64)(34 61)(35 62)(36 63)(37 45)(38 46)(39 47)(40 48)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 38)(2 29)(3 40)(4 31)(5 14)(6 58)(7 16)(8 60)(9 20)(10 33)(11 18)(12 35)(13 45)(15 47)(17 53)(19 55)(21 32)(22 39)(23 30)(24 37)(25 63)(26 49)(27 61)(28 51)(34 54)(36 56)(41 50)(42 62)(43 52)(44 64)(46 57)(48 59)
(1 47 14 29)(2 40 15 7)(3 45 16 31)(4 38 13 5)(6 57 39 21)(8 59 37 23)(9 35 25 51)(10 63 26 20)(11 33 27 49)(12 61 28 18)(17 41 64 54)(19 43 62 56)(22 30 58 48)(24 32 60 46)(34 55 50 42)(36 53 52 44)
(1 61)(2 19)(3 63)(4 17)(5 54)(6 42)(7 56)(8 44)(9 48)(10 31)(11 46)(12 29)(13 64)(14 18)(15 62)(16 20)(21 50)(22 35)(23 52)(24 33)(25 30)(26 45)(27 32)(28 47)(34 57)(36 59)(37 53)(38 41)(39 55)(40 43)(49 60)(51 58)

G:=sub<Sym(64)| (1,21)(2,22)(3,23)(4,24)(5,46)(6,47)(7,48)(8,45)(9,56)(10,53)(11,54)(12,55)(13,60)(14,57)(15,58)(16,59)(17,33)(18,34)(19,35)(20,36)(25,43)(26,44)(27,41)(28,42)(29,39)(30,40)(31,37)(32,38)(49,64)(50,61)(51,62)(52,63), (1,57)(2,58)(3,59)(4,60)(5,32)(6,29)(7,30)(8,31)(9,43)(10,44)(11,41)(12,42)(13,24)(14,21)(15,22)(16,23)(17,49)(18,50)(19,51)(20,52)(25,56)(26,53)(27,54)(28,55)(33,64)(34,61)(35,62)(36,63)(37,45)(38,46)(39,47)(40,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,38)(2,29)(3,40)(4,31)(5,14)(6,58)(7,16)(8,60)(9,20)(10,33)(11,18)(12,35)(13,45)(15,47)(17,53)(19,55)(21,32)(22,39)(23,30)(24,37)(25,63)(26,49)(27,61)(28,51)(34,54)(36,56)(41,50)(42,62)(43,52)(44,64)(46,57)(48,59), (1,47,14,29)(2,40,15,7)(3,45,16,31)(4,38,13,5)(6,57,39,21)(8,59,37,23)(9,35,25,51)(10,63,26,20)(11,33,27,49)(12,61,28,18)(17,41,64,54)(19,43,62,56)(22,30,58,48)(24,32,60,46)(34,55,50,42)(36,53,52,44), (1,61)(2,19)(3,63)(4,17)(5,54)(6,42)(7,56)(8,44)(9,48)(10,31)(11,46)(12,29)(13,64)(14,18)(15,62)(16,20)(21,50)(22,35)(23,52)(24,33)(25,30)(26,45)(27,32)(28,47)(34,57)(36,59)(37,53)(38,41)(39,55)(40,43)(49,60)(51,58)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,46)(6,47)(7,48)(8,45)(9,56)(10,53)(11,54)(12,55)(13,60)(14,57)(15,58)(16,59)(17,33)(18,34)(19,35)(20,36)(25,43)(26,44)(27,41)(28,42)(29,39)(30,40)(31,37)(32,38)(49,64)(50,61)(51,62)(52,63), (1,57)(2,58)(3,59)(4,60)(5,32)(6,29)(7,30)(8,31)(9,43)(10,44)(11,41)(12,42)(13,24)(14,21)(15,22)(16,23)(17,49)(18,50)(19,51)(20,52)(25,56)(26,53)(27,54)(28,55)(33,64)(34,61)(35,62)(36,63)(37,45)(38,46)(39,47)(40,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,38)(2,29)(3,40)(4,31)(5,14)(6,58)(7,16)(8,60)(9,20)(10,33)(11,18)(12,35)(13,45)(15,47)(17,53)(19,55)(21,32)(22,39)(23,30)(24,37)(25,63)(26,49)(27,61)(28,51)(34,54)(36,56)(41,50)(42,62)(43,52)(44,64)(46,57)(48,59), (1,47,14,29)(2,40,15,7)(3,45,16,31)(4,38,13,5)(6,57,39,21)(8,59,37,23)(9,35,25,51)(10,63,26,20)(11,33,27,49)(12,61,28,18)(17,41,64,54)(19,43,62,56)(22,30,58,48)(24,32,60,46)(34,55,50,42)(36,53,52,44), (1,61)(2,19)(3,63)(4,17)(5,54)(6,42)(7,56)(8,44)(9,48)(10,31)(11,46)(12,29)(13,64)(14,18)(15,62)(16,20)(21,50)(22,35)(23,52)(24,33)(25,30)(26,45)(27,32)(28,47)(34,57)(36,59)(37,53)(38,41)(39,55)(40,43)(49,60)(51,58) );

G=PermutationGroup([(1,21),(2,22),(3,23),(4,24),(5,46),(6,47),(7,48),(8,45),(9,56),(10,53),(11,54),(12,55),(13,60),(14,57),(15,58),(16,59),(17,33),(18,34),(19,35),(20,36),(25,43),(26,44),(27,41),(28,42),(29,39),(30,40),(31,37),(32,38),(49,64),(50,61),(51,62),(52,63)], [(1,57),(2,58),(3,59),(4,60),(5,32),(6,29),(7,30),(8,31),(9,43),(10,44),(11,41),(12,42),(13,24),(14,21),(15,22),(16,23),(17,49),(18,50),(19,51),(20,52),(25,56),(26,53),(27,54),(28,55),(33,64),(34,61),(35,62),(36,63),(37,45),(38,46),(39,47),(40,48)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,38),(2,29),(3,40),(4,31),(5,14),(6,58),(7,16),(8,60),(9,20),(10,33),(11,18),(12,35),(13,45),(15,47),(17,53),(19,55),(21,32),(22,39),(23,30),(24,37),(25,63),(26,49),(27,61),(28,51),(34,54),(36,56),(41,50),(42,62),(43,52),(44,64),(46,57),(48,59)], [(1,47,14,29),(2,40,15,7),(3,45,16,31),(4,38,13,5),(6,57,39,21),(8,59,37,23),(9,35,25,51),(10,63,26,20),(11,33,27,49),(12,61,28,18),(17,41,64,54),(19,43,62,56),(22,30,58,48),(24,32,60,46),(34,55,50,42),(36,53,52,44)], [(1,61),(2,19),(3,63),(4,17),(5,54),(6,42),(7,56),(8,44),(9,48),(10,31),(11,46),(12,29),(13,64),(14,18),(15,62),(16,20),(21,50),(22,35),(23,52),(24,33),(25,30),(26,45),(27,32),(28,47),(34,57),(36,59),(37,53),(38,41),(39,55),(40,43),(49,60),(51,58)])

32 conjugacy classes

class 1 2A···2G2H2I2J2K2L4A···4N4O···4S
order12···2222224···44···4
size11···1444484···48···8

32 irreducible representations

dim111111111111224
type+++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ 1+4
kernelC23.649C24C23.34D4C425C4C23.8Q8C23.23D4C24.C22C24.3C22C232D4C23.10D4C23.Q8C23.11D4C23.83C23C2×C4C23C22
# reps111141111121484

Matrix representation of C23.649C24 in GL6(𝔽5)

100000
010000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000010
000001
,
300000
030000
002100
002300
000003
000020
,
030000
200000
004200
000100
000010
000001
,
010000
100000
003000
000300
000003
000030
,
400000
040000
004000
004100
000001
000010

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,2,0,0,0,0,1,3,0,0,0,0,0,0,0,2,0,0,0,0,3,0],[0,2,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,0,3,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,4,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C23.649C24 in GAP, Magma, Sage, TeX

C_2^3._{649}C_2^4
% in TeX

G:=Group("C2^3.649C2^4");
// GroupNames label

G:=SmallGroup(128,1481);
// by ID

G=gap.SmallGroup(128,1481);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,723,268,1571,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=g^2=1,d^2=c,f^2=b*a=a*b,a*c=c*a,e*d*e=a*d=d*a,g*e*g=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g=a*b*d,f*g=g*f>;
// generators/relations

׿
×
𝔽