Copied to
clipboard

G = C24.192C23order 128 = 27

32nd non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.192C23, C23.196C24, C22.212- 1+4, C22.352+ 1+4, C429C49C2, C42⋊C224C4, C428C410C2, C42.177(C2×C4), (C2×C42).11C22, C22.87(C23×C4), C23.82(C22×C4), C4.64(C42⋊C2), (C23×C4).288C22, (C22×C4).461C23, C23.7Q8.24C2, C23.63C232C2, C24.C22.1C2, C2.C42.34C22, C2.6(C23.33C23), C2.1(C22.35C24), C2.1(C22.36C24), C2.1(C22.34C24), (C4×C4⋊C4)⋊23C2, C4⋊C4.202(C2×C4), C22⋊C4.56(C2×C4), C22.84(C2×C4○D4), (C2×C4).643(C4○D4), (C2×C4⋊C4).806C22, (C2×C4).219(C22×C4), (C22×C4).299(C2×C4), C2.21(C2×C42⋊C2), (C2×C42⋊C2).26C2, (C2×C22⋊C4).24C22, SmallGroup(128,1046)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C24.192C23
C1C2C22C23C22×C4C23×C4C2×C42⋊C2 — C24.192C23
C1C22 — C24.192C23
C1C23 — C24.192C23
C1C23 — C24.192C23

Generators and relations for C24.192C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=c, e2=b, g2=a, ab=ba, ac=ca, ede-1=gdg-1=ad=da, fef=ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 396 in 242 conjugacy classes, 140 normal (18 characteristic)
C1, C2 [×3], C2 [×4], C2 [×2], C4 [×4], C4 [×18], C22 [×3], C22 [×4], C22 [×10], C2×C4 [×16], C2×C4 [×42], C23, C23 [×2], C23 [×6], C42 [×8], C42 [×4], C22⋊C4 [×8], C22⋊C4 [×4], C4⋊C4 [×8], C4⋊C4 [×12], C22×C4 [×2], C22×C4 [×16], C22×C4 [×4], C24, C2.C42 [×12], C2×C42 [×2], C2×C42 [×4], C2×C22⋊C4 [×6], C2×C4⋊C4 [×10], C42⋊C2 [×8], C23×C4, C4×C4⋊C4 [×2], C23.7Q8 [×2], C428C4, C429C4, C23.63C23 [×4], C24.C22 [×4], C2×C42⋊C2, C24.192C23
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], C22×C4 [×14], C4○D4 [×4], C24, C42⋊C2 [×4], C23×C4, C2×C4○D4 [×2], 2+ 1+4 [×2], 2- 1+4 [×2], C2×C42⋊C2, C23.33C23 [×2], C22.34C24, C22.35C24, C22.36C24 [×2], C24.192C23

Smallest permutation representation of C24.192C23
On 64 points
Generators in S64
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 59 51 47)(2 32 52 20)(3 57 49 45)(4 30 50 18)(5 42 36 54)(6 15 33 27)(7 44 34 56)(8 13 35 25)(9 29 21 17)(10 58 22 46)(11 31 23 19)(12 60 24 48)(14 62 26 38)(16 64 28 40)(37 41 61 53)(39 43 63 55)
(2 52)(4 50)(5 62)(6 39)(7 64)(8 37)(10 22)(12 24)(14 26)(16 28)(17 45)(18 58)(19 47)(20 60)(29 57)(30 46)(31 59)(32 48)(33 63)(34 40)(35 61)(36 38)(42 54)(44 56)
(1 15 11 43)(2 44 12 16)(3 13 9 41)(4 42 10 14)(5 46 38 18)(6 19 39 47)(7 48 40 20)(8 17 37 45)(21 53 49 25)(22 26 50 54)(23 55 51 27)(24 28 52 56)(29 61 57 35)(30 36 58 62)(31 63 59 33)(32 34 60 64)

G:=sub<Sym(64)| (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,47)(2,32,52,20)(3,57,49,45)(4,30,50,18)(5,42,36,54)(6,15,33,27)(7,44,34,56)(8,13,35,25)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(14,62,26,38)(16,64,28,40)(37,41,61,53)(39,43,63,55), (2,52)(4,50)(5,62)(6,39)(7,64)(8,37)(10,22)(12,24)(14,26)(16,28)(17,45)(18,58)(19,47)(20,60)(29,57)(30,46)(31,59)(32,48)(33,63)(34,40)(35,61)(36,38)(42,54)(44,56), (1,15,11,43)(2,44,12,16)(3,13,9,41)(4,42,10,14)(5,46,38,18)(6,19,39,47)(7,48,40,20)(8,17,37,45)(21,53,49,25)(22,26,50,54)(23,55,51,27)(24,28,52,56)(29,61,57,35)(30,36,58,62)(31,63,59,33)(32,34,60,64)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,59,51,47)(2,32,52,20)(3,57,49,45)(4,30,50,18)(5,42,36,54)(6,15,33,27)(7,44,34,56)(8,13,35,25)(9,29,21,17)(10,58,22,46)(11,31,23,19)(12,60,24,48)(14,62,26,38)(16,64,28,40)(37,41,61,53)(39,43,63,55), (2,52)(4,50)(5,62)(6,39)(7,64)(8,37)(10,22)(12,24)(14,26)(16,28)(17,45)(18,58)(19,47)(20,60)(29,57)(30,46)(31,59)(32,48)(33,63)(34,40)(35,61)(36,38)(42,54)(44,56), (1,15,11,43)(2,44,12,16)(3,13,9,41)(4,42,10,14)(5,46,38,18)(6,19,39,47)(7,48,40,20)(8,17,37,45)(21,53,49,25)(22,26,50,54)(23,55,51,27)(24,28,52,56)(29,61,57,35)(30,36,58,62)(31,63,59,33)(32,34,60,64) );

G=PermutationGroup([(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,59,51,47),(2,32,52,20),(3,57,49,45),(4,30,50,18),(5,42,36,54),(6,15,33,27),(7,44,34,56),(8,13,35,25),(9,29,21,17),(10,58,22,46),(11,31,23,19),(12,60,24,48),(14,62,26,38),(16,64,28,40),(37,41,61,53),(39,43,63,55)], [(2,52),(4,50),(5,62),(6,39),(7,64),(8,37),(10,22),(12,24),(14,26),(16,28),(17,45),(18,58),(19,47),(20,60),(29,57),(30,46),(31,59),(32,48),(33,63),(34,40),(35,61),(36,38),(42,54),(44,56)], [(1,15,11,43),(2,44,12,16),(3,13,9,41),(4,42,10,14),(5,46,38,18),(6,19,39,47),(7,48,40,20),(8,17,37,45),(21,53,49,25),(22,26,50,54),(23,55,51,27),(24,28,52,56),(29,61,57,35),(30,36,58,62),(31,63,59,33),(32,34,60,64)])

44 conjugacy classes

class 1 2A···2G2H2I4A···4L4M···4AH
order12···2224···44···4
size11···1442···24···4

44 irreducible representations

dim111111111244
type+++++++++-
imageC1C2C2C2C2C2C2C2C4C4○D42+ 1+42- 1+4
kernelC24.192C23C4×C4⋊C4C23.7Q8C428C4C429C4C23.63C23C24.C22C2×C42⋊C2C42⋊C2C2×C4C22C22
# reps1221144116822

Matrix representation of C24.192C23 in GL8(𝔽5)

10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00004000
00000400
00000040
00000004
,
40000000
04000000
00100000
00010000
00001000
00000100
00000010
00000001
,
31000000
02000000
00320000
00120000
00000004
00000040
00000400
00004000
,
20000000
02000000
00300000
00030000
00000010
00000001
00004000
00000400
,
10000000
44000000
00100000
00240000
00001000
00000100
00000040
00000004
,
10000000
01000000
00400000
00040000
00000100
00004000
00000001
00000040

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,0,3,1,0,0,0,0,0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,2,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0] >;

C24.192C23 in GAP, Magma, Sage, TeX

C_2^4._{192}C_2^3
% in TeX

G:=Group("C2^4.192C2^3");
// GroupNames label

G:=SmallGroup(128,1046);
// by ID

G=gap.SmallGroup(128,1046);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,232,758,219,675,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c,e^2=b,g^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=g*d*g^-1=a*d=d*a,f*e*f=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽