Copied to
clipboard

G = C24.395C23order 128 = 27

235th non-split extension by C24 of C23 acting via C23/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.395C23, C23.588C24, C22.3622+ 1+4, (C2×D4)⋊18D4, C23.65(C2×D4), C232D440C2, C2.93(D45D4), C23.76(C4○D4), C23.11D480C2, C23.23D485C2, C23.34D447C2, C23.10D482C2, C2.44(C233D4), (C22×C4).557C23, (C23×C4).147C22, C23.8Q8102C2, C22.397(C22×D4), (C22×D4).227C22, C23.83C2375C2, C2.64(C22.32C24), C2.12(C22.54C24), C2.C42.295C22, C2.82(C22.47C24), C2.40(C22.34C24), (C2×C4⋊D4)⋊35C2, (C2×C4).418(C2×D4), (C2×C4).420(C4○D4), (C2×C4⋊C4).402C22, C22.450(C2×C4○D4), (C2×C22⋊C4).255C22, SmallGroup(128,1420)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C24.395C23
C1C2C22C23C24C23×C4C23.34D4 — C24.395C23
C1C23 — C24.395C23
C1C23 — C24.395C23
C1C23 — C24.395C23

Generators and relations for C24.395C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=g2=1, e2=cb=bc, f2=b, eae-1=ab=ba, faf-1=ac=ca, ad=da, gag=abc, bd=db, geg=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, cf=fc, cg=gc, fef-1=de=ed, df=fd, dg=gd, fg=gf >

Subgroups: 724 in 313 conjugacy classes, 96 normal (82 characteristic)
C1, C2 [×7], C2 [×7], C4 [×13], C22 [×7], C22 [×37], C2×C4 [×4], C2×C4 [×43], D4 [×24], C23, C23 [×6], C23 [×25], C22⋊C4 [×18], C4⋊C4 [×5], C22×C4 [×11], C22×C4 [×12], C2×D4 [×4], C2×D4 [×25], C24 [×4], C2.C42 [×10], C2×C22⋊C4 [×13], C2×C4⋊C4 [×3], C4⋊D4 [×8], C23×C4 [×3], C22×D4 [×6], C23.34D4, C23.8Q8, C23.23D4 [×5], C232D4 [×2], C23.10D4, C23.11D4 [×2], C23.83C23, C2×C4⋊D4 [×2], C24.395C23
Quotients: C1, C2 [×15], C22 [×35], D4 [×4], C23 [×15], C2×D4 [×6], C4○D4 [×4], C24, C22×D4, C2×C4○D4 [×2], 2+ 1+4 [×4], C233D4, C22.32C24, C22.34C24, D45D4 [×2], C22.47C24, C22.54C24, C24.395C23

Smallest permutation representation of C24.395C23
On 64 points
Generators in S64
(1 9)(2 24)(3 11)(4 22)(5 26)(6 29)(7 28)(8 31)(10 42)(12 44)(13 49)(14 18)(15 51)(16 20)(17 45)(19 47)(21 43)(23 41)(25 61)(27 63)(30 64)(32 62)(33 58)(34 53)(35 60)(36 55)(37 54)(38 57)(39 56)(40 59)(46 50)(48 52)
(1 41)(2 42)(3 43)(4 44)(5 62)(6 63)(7 64)(8 61)(9 23)(10 24)(11 21)(12 22)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(25 31)(26 32)(27 29)(28 30)(33 39)(34 40)(35 37)(36 38)(53 59)(54 60)(55 57)(56 58)
(1 43)(2 44)(3 41)(4 42)(5 64)(6 61)(7 62)(8 63)(9 21)(10 22)(11 23)(12 24)(13 47)(14 48)(15 45)(16 46)(17 51)(18 52)(19 49)(20 50)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(53 57)(54 58)(55 59)(56 60)
(1 57)(2 58)(3 59)(4 60)(5 20)(6 17)(7 18)(8 19)(9 38)(10 39)(11 40)(12 37)(13 27)(14 28)(15 25)(16 26)(21 34)(22 35)(23 36)(24 33)(29 45)(30 46)(31 47)(32 48)(41 55)(42 56)(43 53)(44 54)(49 63)(50 64)(51 61)(52 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 49 41 17)(2 64 42 7)(3 51 43 19)(4 62 44 5)(6 57 63 55)(8 59 61 53)(9 47 23 15)(10 32 24 26)(11 45 21 13)(12 30 22 28)(14 37 46 35)(16 39 48 33)(18 58 50 56)(20 60 52 54)(25 38 31 36)(27 40 29 34)
(1 47)(2 16)(3 45)(4 14)(5 35)(6 38)(7 33)(8 40)(9 17)(10 50)(11 19)(12 52)(13 43)(15 41)(18 24)(20 22)(21 51)(23 49)(25 55)(26 58)(27 53)(28 60)(29 59)(30 54)(31 57)(32 56)(34 61)(36 63)(37 62)(39 64)(42 48)(44 46)

G:=sub<Sym(64)| (1,9)(2,24)(3,11)(4,22)(5,26)(6,29)(7,28)(8,31)(10,42)(12,44)(13,49)(14,18)(15,51)(16,20)(17,45)(19,47)(21,43)(23,41)(25,61)(27,63)(30,64)(32,62)(33,58)(34,53)(35,60)(36,55)(37,54)(38,57)(39,56)(40,59)(46,50)(48,52), (1,41)(2,42)(3,43)(4,44)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,31)(26,32)(27,29)(28,30)(33,39)(34,40)(35,37)(36,38)(53,59)(54,60)(55,57)(56,58), (1,43)(2,44)(3,41)(4,42)(5,64)(6,61)(7,62)(8,63)(9,21)(10,22)(11,23)(12,24)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(53,57)(54,58)(55,59)(56,60), (1,57)(2,58)(3,59)(4,60)(5,20)(6,17)(7,18)(8,19)(9,38)(10,39)(11,40)(12,37)(13,27)(14,28)(15,25)(16,26)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(41,55)(42,56)(43,53)(44,54)(49,63)(50,64)(51,61)(52,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,49,41,17)(2,64,42,7)(3,51,43,19)(4,62,44,5)(6,57,63,55)(8,59,61,53)(9,47,23,15)(10,32,24,26)(11,45,21,13)(12,30,22,28)(14,37,46,35)(16,39,48,33)(18,58,50,56)(20,60,52,54)(25,38,31,36)(27,40,29,34), (1,47)(2,16)(3,45)(4,14)(5,35)(6,38)(7,33)(8,40)(9,17)(10,50)(11,19)(12,52)(13,43)(15,41)(18,24)(20,22)(21,51)(23,49)(25,55)(26,58)(27,53)(28,60)(29,59)(30,54)(31,57)(32,56)(34,61)(36,63)(37,62)(39,64)(42,48)(44,46)>;

G:=Group( (1,9)(2,24)(3,11)(4,22)(5,26)(6,29)(7,28)(8,31)(10,42)(12,44)(13,49)(14,18)(15,51)(16,20)(17,45)(19,47)(21,43)(23,41)(25,61)(27,63)(30,64)(32,62)(33,58)(34,53)(35,60)(36,55)(37,54)(38,57)(39,56)(40,59)(46,50)(48,52), (1,41)(2,42)(3,43)(4,44)(5,62)(6,63)(7,64)(8,61)(9,23)(10,24)(11,21)(12,22)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(25,31)(26,32)(27,29)(28,30)(33,39)(34,40)(35,37)(36,38)(53,59)(54,60)(55,57)(56,58), (1,43)(2,44)(3,41)(4,42)(5,64)(6,61)(7,62)(8,63)(9,21)(10,22)(11,23)(12,24)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(53,57)(54,58)(55,59)(56,60), (1,57)(2,58)(3,59)(4,60)(5,20)(6,17)(7,18)(8,19)(9,38)(10,39)(11,40)(12,37)(13,27)(14,28)(15,25)(16,26)(21,34)(22,35)(23,36)(24,33)(29,45)(30,46)(31,47)(32,48)(41,55)(42,56)(43,53)(44,54)(49,63)(50,64)(51,61)(52,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,49,41,17)(2,64,42,7)(3,51,43,19)(4,62,44,5)(6,57,63,55)(8,59,61,53)(9,47,23,15)(10,32,24,26)(11,45,21,13)(12,30,22,28)(14,37,46,35)(16,39,48,33)(18,58,50,56)(20,60,52,54)(25,38,31,36)(27,40,29,34), (1,47)(2,16)(3,45)(4,14)(5,35)(6,38)(7,33)(8,40)(9,17)(10,50)(11,19)(12,52)(13,43)(15,41)(18,24)(20,22)(21,51)(23,49)(25,55)(26,58)(27,53)(28,60)(29,59)(30,54)(31,57)(32,56)(34,61)(36,63)(37,62)(39,64)(42,48)(44,46) );

G=PermutationGroup([(1,9),(2,24),(3,11),(4,22),(5,26),(6,29),(7,28),(8,31),(10,42),(12,44),(13,49),(14,18),(15,51),(16,20),(17,45),(19,47),(21,43),(23,41),(25,61),(27,63),(30,64),(32,62),(33,58),(34,53),(35,60),(36,55),(37,54),(38,57),(39,56),(40,59),(46,50),(48,52)], [(1,41),(2,42),(3,43),(4,44),(5,62),(6,63),(7,64),(8,61),(9,23),(10,24),(11,21),(12,22),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(25,31),(26,32),(27,29),(28,30),(33,39),(34,40),(35,37),(36,38),(53,59),(54,60),(55,57),(56,58)], [(1,43),(2,44),(3,41),(4,42),(5,64),(6,61),(7,62),(8,63),(9,21),(10,22),(11,23),(12,24),(13,47),(14,48),(15,45),(16,46),(17,51),(18,52),(19,49),(20,50),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(53,57),(54,58),(55,59),(56,60)], [(1,57),(2,58),(3,59),(4,60),(5,20),(6,17),(7,18),(8,19),(9,38),(10,39),(11,40),(12,37),(13,27),(14,28),(15,25),(16,26),(21,34),(22,35),(23,36),(24,33),(29,45),(30,46),(31,47),(32,48),(41,55),(42,56),(43,53),(44,54),(49,63),(50,64),(51,61),(52,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,49,41,17),(2,64,42,7),(3,51,43,19),(4,62,44,5),(6,57,63,55),(8,59,61,53),(9,47,23,15),(10,32,24,26),(11,45,21,13),(12,30,22,28),(14,37,46,35),(16,39,48,33),(18,58,50,56),(20,60,52,54),(25,38,31,36),(27,40,29,34)], [(1,47),(2,16),(3,45),(4,14),(5,35),(6,38),(7,33),(8,40),(9,17),(10,50),(11,19),(12,52),(13,43),(15,41),(18,24),(20,22),(21,51),(23,49),(25,55),(26,58),(27,53),(28,60),(29,59),(30,54),(31,57),(32,56),(34,61),(36,63),(37,62),(39,64),(42,48),(44,46)])

32 conjugacy classes

class 1 2A···2G2H···2M2N4A···4L4M···4Q
order12···22···224···44···4
size11···14···484···48···8

32 irreducible representations

dim1111111112224
type+++++++++++
imageC1C2C2C2C2C2C2C2C2D4C4○D4C4○D42+ 1+4
kernelC24.395C23C23.34D4C23.8Q8C23.23D4C232D4C23.10D4C23.11D4C23.83C23C2×C4⋊D4C2×D4C2×C4C23C22
# reps1115212124444

Matrix representation of C24.395C23 in GL6(𝔽5)

100000
040000
002400
003300
000010
000001
,
100000
010000
004000
000400
000010
000001
,
400000
040000
001000
000100
000010
000001
,
100000
010000
001000
000100
000040
000004
,
200000
020000
002000
003300
000001
000010
,
010000
100000
003000
000300
000010
000004
,
010000
100000
004300
000100
000010
000001

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,2,3,0,0,0,0,4,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,3,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,3,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C24.395C23 in GAP, Magma, Sage, TeX

C_2^4._{395}C_2^3
% in TeX

G:=Group("C2^4.395C2^3");
// GroupNames label

G:=SmallGroup(128,1420);
// by ID

G=gap.SmallGroup(128,1420);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,253,344,758,723,100,1571,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=g^2=1,e^2=c*b=b*c,f^2=b,e*a*e^-1=a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,g*a*g=a*b*c,b*d=d*b,g*e*g=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,f*e*f^-1=d*e=e*d,d*f=f*d,d*g=g*d,f*g=g*f>;
// generators/relations

׿
×
𝔽