Copied to
clipboard

G = C24.545C23order 128 = 27

26th non-split extension by C24 of C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.545C23, C23.198C24, C22.372+ 1+4, C22.222- 1+4, (C22×C4).53Q8, C23.92(C2×Q8), C23.365(C2×D4), (C22×C4).361D4, C22.89(C23×C4), C22.89(C22×D4), C22.31(C22×Q8), (C2×C42).407C22, (C22×C4).463C23, (C23×C4).289C22, C23.212(C22×C4), C23.7Q8.25C2, C23.65C239C2, C2.10(C22.11C24), C2.C42.35C22, C2.6(C23.32C23), C2.2(C22.31C24), C2.1(C23.41C23), (C2×C4⋊C4)⋊35C4, (C2×C4)⋊5(C4⋊C4), C4.58(C2×C4⋊C4), C4⋊C4.203(C2×C4), C22.30(C2×C4⋊C4), C2.12(C22×C4⋊C4), (C2×C4).228(C2×Q8), (C2×C4).1393(C2×D4), (C22×C4⋊C4).25C2, (C2×C4⋊C4).172C22, (C22×C4).300(C2×C4), (C2×C4).221(C22×C4), (C2×C42⋊C2).27C2, (C2×C22⋊C4).425C22, SmallGroup(128,1048)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C24.545C23
C1C2C22C23C24C23×C4C22×C4⋊C4 — C24.545C23
C1C22 — C24.545C23
C1C23 — C24.545C23
C1C23 — C24.545C23

Generators and relations for C24.545C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=b, g2=c, eae-1=ab=ba, ac=ca, ad=da, af=fa, ag=ga, bc=cb, bd=db, fef-1=be=eb, gfg-1=bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd >

Subgroups: 476 in 300 conjugacy classes, 180 normal (12 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×8], C4 [×16], C22 [×3], C22 [×8], C22 [×12], C2×C4 [×36], C2×C4 [×40], C23, C23 [×6], C23 [×4], C42 [×8], C22⋊C4 [×8], C4⋊C4 [×16], C4⋊C4 [×16], C22×C4 [×34], C22×C4 [×4], C24, C2.C42 [×8], C2×C42 [×4], C2×C22⋊C4 [×4], C2×C4⋊C4 [×24], C42⋊C2 [×8], C23×C4, C23×C4 [×2], C23.7Q8 [×4], C23.65C23 [×8], C22×C4⋊C4, C2×C42⋊C2 [×2], C24.545C23
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×4], Q8 [×4], C23 [×15], C4⋊C4 [×16], C22×C4 [×14], C2×D4 [×6], C2×Q8 [×6], C24, C2×C4⋊C4 [×12], C23×C4, C22×D4, C22×Q8, 2+ 1+4 [×2], 2- 1+4 [×2], C22×C4⋊C4, C22.11C24, C23.32C23, C22.31C24 [×2], C23.41C23 [×2], C24.545C23

Smallest permutation representation of C24.545C23
On 64 points
Generators in S64
(1 3)(2 10)(4 12)(5 40)(6 8)(7 38)(9 11)(13 15)(14 44)(16 42)(17 19)(18 48)(20 46)(21 23)(22 52)(24 50)(25 27)(26 56)(28 54)(29 31)(30 60)(32 58)(33 35)(34 62)(36 64)(37 39)(41 43)(45 47)(49 51)(53 55)(57 59)(61 63)
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 19 11 47)(2 48 12 20)(3 17 9 45)(4 46 10 18)(5 42 38 14)(6 15 39 43)(7 44 40 16)(8 13 37 41)(21 57 49 29)(22 30 50 58)(23 59 51 31)(24 32 52 60)(25 61 53 35)(26 36 54 62)(27 63 55 33)(28 34 56 64)
(1 55 51 43)(2 44 52 56)(3 53 49 41)(4 42 50 54)(5 58 36 46)(6 47 33 59)(7 60 34 48)(8 45 35 57)(9 25 21 13)(10 14 22 26)(11 27 23 15)(12 16 24 28)(17 61 29 37)(18 38 30 62)(19 63 31 39)(20 40 32 64)

G:=sub<Sym(64)| (1,3)(2,10)(4,12)(5,40)(6,8)(7,38)(9,11)(13,15)(14,44)(16,42)(17,19)(18,48)(20,46)(21,23)(22,52)(24,50)(25,27)(26,56)(28,54)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,11,47)(2,48,12,20)(3,17,9,45)(4,46,10,18)(5,42,38,14)(6,15,39,43)(7,44,40,16)(8,13,37,41)(21,57,49,29)(22,30,50,58)(23,59,51,31)(24,32,52,60)(25,61,53,35)(26,36,54,62)(27,63,55,33)(28,34,56,64), (1,55,51,43)(2,44,52,56)(3,53,49,41)(4,42,50,54)(5,58,36,46)(6,47,33,59)(7,60,34,48)(8,45,35,57)(9,25,21,13)(10,14,22,26)(11,27,23,15)(12,16,24,28)(17,61,29,37)(18,38,30,62)(19,63,31,39)(20,40,32,64)>;

G:=Group( (1,3)(2,10)(4,12)(5,40)(6,8)(7,38)(9,11)(13,15)(14,44)(16,42)(17,19)(18,48)(20,46)(21,23)(22,52)(24,50)(25,27)(26,56)(28,54)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,11,47)(2,48,12,20)(3,17,9,45)(4,46,10,18)(5,42,38,14)(6,15,39,43)(7,44,40,16)(8,13,37,41)(21,57,49,29)(22,30,50,58)(23,59,51,31)(24,32,52,60)(25,61,53,35)(26,36,54,62)(27,63,55,33)(28,34,56,64), (1,55,51,43)(2,44,52,56)(3,53,49,41)(4,42,50,54)(5,58,36,46)(6,47,33,59)(7,60,34,48)(8,45,35,57)(9,25,21,13)(10,14,22,26)(11,27,23,15)(12,16,24,28)(17,61,29,37)(18,38,30,62)(19,63,31,39)(20,40,32,64) );

G=PermutationGroup([(1,3),(2,10),(4,12),(5,40),(6,8),(7,38),(9,11),(13,15),(14,44),(16,42),(17,19),(18,48),(20,46),(21,23),(22,52),(24,50),(25,27),(26,56),(28,54),(29,31),(30,60),(32,58),(33,35),(34,62),(36,64),(37,39),(41,43),(45,47),(49,51),(53,55),(57,59),(61,63)], [(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,19,11,47),(2,48,12,20),(3,17,9,45),(4,46,10,18),(5,42,38,14),(6,15,39,43),(7,44,40,16),(8,13,37,41),(21,57,49,29),(22,30,50,58),(23,59,51,31),(24,32,52,60),(25,61,53,35),(26,36,54,62),(27,63,55,33),(28,34,56,64)], [(1,55,51,43),(2,44,52,56),(3,53,49,41),(4,42,50,54),(5,58,36,46),(6,47,33,59),(7,60,34,48),(8,45,35,57),(9,25,21,13),(10,14,22,26),(11,27,23,15),(12,16,24,28),(17,61,29,37),(18,38,30,62),(19,63,31,39),(20,40,32,64)])

44 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4AF
order12···222224···44···4
size11···122222···24···4

44 irreducible representations

dim1111112244
type++++++-+-
imageC1C2C2C2C2C4D4Q82+ 1+42- 1+4
kernelC24.545C23C23.7Q8C23.65C23C22×C4⋊C4C2×C42⋊C2C2×C4⋊C4C22×C4C22×C4C22C22
# reps14812164422

Matrix representation of C24.545C23 in GL8(𝔽5)

40000000
04000000
00100000
00010000
00001000
00000100
00001040
00004104
,
10000000
01000000
00100000
00010000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00001000
00000100
00000010
00000001
,
10000000
01000000
00400000
00040000
00001000
00000100
00000010
00000001
,
03000000
20000000
00010000
00400000
00001030
00004103
00000040
00004014
,
10000000
01000000
00400000
00040000
00002300
00000300
00003332
00000402
,
30000000
02000000
00200000
00030000
00003200
00001200
00001032
00002412

G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,4,0,0,0,0,0,1,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,4,0,4,0,0,0,0,0,1,0,0,0,0,0,0,3,0,4,1,0,0,0,0,0,3,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,3,0,0,0,0,0,3,3,3,4,0,0,0,0,0,0,3,0,0,0,0,0,0,0,2,2],[3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,1,1,2,0,0,0,0,2,2,0,4,0,0,0,0,0,0,3,1,0,0,0,0,0,0,2,2] >;

C24.545C23 in GAP, Magma, Sage, TeX

C_2^4._{545}C_2^3
% in TeX

G:=Group("C2^4.545C2^3");
// GroupNames label

G:=SmallGroup(128,1048);
// by ID

G=gap.SmallGroup(128,1048);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,219,184,675]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=b,g^2=c,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,g*f*g^-1=b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽