Copied to
clipboard

## G = C24.545C23order 128 = 27

### 26th non-split extension by C24 of C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 2), monomial

Series: Derived Chief Lower central Upper central Jennings

 Derived series C1 — C22 — C24.545C23
 Chief series C1 — C2 — C22 — C23 — C24 — C23×C4 — C22×C4⋊C4 — C24.545C23
 Lower central C1 — C22 — C24.545C23
 Upper central C1 — C23 — C24.545C23
 Jennings C1 — C23 — C24.545C23

Generators and relations for C24.545C23
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=b, g2=c, eae-1=ab=ba, ac=ca, ad=da, af=fa, ag=ga, bc=cb, bd=db, fef-1=be=eb, gfg-1=bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd >

Subgroups: 476 in 300 conjugacy classes, 180 normal (12 characteristic)
C1, C2 [×3], C2 [×4], C2 [×4], C4 [×8], C4 [×16], C22 [×3], C22 [×8], C22 [×12], C2×C4 [×36], C2×C4 [×40], C23, C23 [×6], C23 [×4], C42 [×8], C22⋊C4 [×8], C4⋊C4 [×16], C4⋊C4 [×16], C22×C4 [×34], C22×C4 [×4], C24, C2.C42 [×8], C2×C42 [×4], C2×C22⋊C4 [×4], C2×C4⋊C4 [×24], C42⋊C2 [×8], C23×C4, C23×C4 [×2], C23.7Q8 [×4], C23.65C23 [×8], C22×C4⋊C4, C2×C42⋊C2 [×2], C24.545C23
Quotients: C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], D4 [×4], Q8 [×4], C23 [×15], C4⋊C4 [×16], C22×C4 [×14], C2×D4 [×6], C2×Q8 [×6], C24, C2×C4⋊C4 [×12], C23×C4, C22×D4, C22×Q8, 2+ 1+4 [×2], 2- 1+4 [×2], C22×C4⋊C4, C22.11C24, C23.32C23, C22.31C24 [×2], C23.41C23 [×2], C24.545C23

Smallest permutation representation of C24.545C23
On 64 points
Generators in S64
```(1 3)(2 10)(4 12)(5 40)(6 8)(7 38)(9 11)(13 15)(14 44)(16 42)(17 19)(18 48)(20 46)(21 23)(22 52)(24 50)(25 27)(26 56)(28 54)(29 31)(30 60)(32 58)(33 35)(34 62)(36 64)(37 39)(41 43)(45 47)(49 51)(53 55)(57 59)(61 63)
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 19 11 47)(2 48 12 20)(3 17 9 45)(4 46 10 18)(5 42 38 14)(6 15 39 43)(7 44 40 16)(8 13 37 41)(21 57 49 29)(22 30 50 58)(23 59 51 31)(24 32 52 60)(25 61 53 35)(26 36 54 62)(27 63 55 33)(28 34 56 64)
(1 55 51 43)(2 44 52 56)(3 53 49 41)(4 42 50 54)(5 58 36 46)(6 47 33 59)(7 60 34 48)(8 45 35 57)(9 25 21 13)(10 14 22 26)(11 27 23 15)(12 16 24 28)(17 61 29 37)(18 38 30 62)(19 63 31 39)(20 40 32 64)```

`G:=sub<Sym(64)| (1,3)(2,10)(4,12)(5,40)(6,8)(7,38)(9,11)(13,15)(14,44)(16,42)(17,19)(18,48)(20,46)(21,23)(22,52)(24,50)(25,27)(26,56)(28,54)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,11,47)(2,48,12,20)(3,17,9,45)(4,46,10,18)(5,42,38,14)(6,15,39,43)(7,44,40,16)(8,13,37,41)(21,57,49,29)(22,30,50,58)(23,59,51,31)(24,32,52,60)(25,61,53,35)(26,36,54,62)(27,63,55,33)(28,34,56,64), (1,55,51,43)(2,44,52,56)(3,53,49,41)(4,42,50,54)(5,58,36,46)(6,47,33,59)(7,60,34,48)(8,45,35,57)(9,25,21,13)(10,14,22,26)(11,27,23,15)(12,16,24,28)(17,61,29,37)(18,38,30,62)(19,63,31,39)(20,40,32,64)>;`

`G:=Group( (1,3)(2,10)(4,12)(5,40)(6,8)(7,38)(9,11)(13,15)(14,44)(16,42)(17,19)(18,48)(20,46)(21,23)(22,52)(24,50)(25,27)(26,56)(28,54)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,11,47)(2,48,12,20)(3,17,9,45)(4,46,10,18)(5,42,38,14)(6,15,39,43)(7,44,40,16)(8,13,37,41)(21,57,49,29)(22,30,50,58)(23,59,51,31)(24,32,52,60)(25,61,53,35)(26,36,54,62)(27,63,55,33)(28,34,56,64), (1,55,51,43)(2,44,52,56)(3,53,49,41)(4,42,50,54)(5,58,36,46)(6,47,33,59)(7,60,34,48)(8,45,35,57)(9,25,21,13)(10,14,22,26)(11,27,23,15)(12,16,24,28)(17,61,29,37)(18,38,30,62)(19,63,31,39)(20,40,32,64) );`

`G=PermutationGroup([(1,3),(2,10),(4,12),(5,40),(6,8),(7,38),(9,11),(13,15),(14,44),(16,42),(17,19),(18,48),(20,46),(21,23),(22,52),(24,50),(25,27),(26,56),(28,54),(29,31),(30,60),(32,58),(33,35),(34,62),(36,64),(37,39),(41,43),(45,47),(49,51),(53,55),(57,59),(61,63)], [(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,19,11,47),(2,48,12,20),(3,17,9,45),(4,46,10,18),(5,42,38,14),(6,15,39,43),(7,44,40,16),(8,13,37,41),(21,57,49,29),(22,30,50,58),(23,59,51,31),(24,32,52,60),(25,61,53,35),(26,36,54,62),(27,63,55,33),(28,34,56,64)], [(1,55,51,43),(2,44,52,56),(3,53,49,41),(4,42,50,54),(5,58,36,46),(6,47,33,59),(7,60,34,48),(8,45,35,57),(9,25,21,13),(10,14,22,26),(11,27,23,15),(12,16,24,28),(17,61,29,37),(18,38,30,62),(19,63,31,39),(20,40,32,64)])`

44 conjugacy classes

 class 1 2A ··· 2G 2H 2I 2J 2K 4A ··· 4H 4I ··· 4AF order 1 2 ··· 2 2 2 2 2 4 ··· 4 4 ··· 4 size 1 1 ··· 1 2 2 2 2 2 ··· 2 4 ··· 4

44 irreducible representations

 dim 1 1 1 1 1 1 2 2 4 4 type + + + + + + - + - image C1 C2 C2 C2 C2 C4 D4 Q8 2+ 1+4 2- 1+4 kernel C24.545C23 C23.7Q8 C23.65C23 C22×C4⋊C4 C2×C42⋊C2 C2×C4⋊C4 C22×C4 C22×C4 C22 C22 # reps 1 4 8 1 2 16 4 4 2 2

Matrix representation of C24.545C23 in GL8(𝔽5)

 4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 4 0 0 0 0 0 4 1 0 4
,
 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4
,
 4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
,
 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
,
 0 3 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 4 1 0 3 0 0 0 0 0 0 4 0 0 0 0 0 4 0 1 4
,
 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 3 3 3 2 0 0 0 0 0 4 0 2
,
 3 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 1 2 0 0 0 0 0 0 1 0 3 2 0 0 0 0 2 4 1 2

`G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,1,4,0,0,0,0,0,1,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,4,0,4,0,0,0,0,0,1,0,0,0,0,0,0,3,0,4,1,0,0,0,0,0,3,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,3,0,0,0,0,0,3,3,3,4,0,0,0,0,0,0,3,0,0,0,0,0,0,0,2,2],[3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,1,1,2,0,0,0,0,2,2,0,4,0,0,0,0,0,0,3,1,0,0,0,0,0,0,2,2] >;`

C24.545C23 in GAP, Magma, Sage, TeX

`C_2^4._{545}C_2^3`
`% in TeX`

`G:=Group("C2^4.545C2^3");`
`// GroupNames label`

`G:=SmallGroup(128,1048);`
`// by ID`

`G=gap.SmallGroup(128,1048);`
`# by ID`

`G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,120,758,219,184,675]);`
`// Polycyclic`

`G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=b,g^2=c,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,g*f*g^-1=b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d>;`
`// generators/relations`

׿
×
𝔽