Copied to
clipboard

G = C22×C4⋊Q8order 128 = 27

Direct product of C22 and C4⋊Q8

direct product, p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C22×C4⋊Q8, C22.30C25, C42.738C23, C24.659C23, C23.271C24, C41(C22×Q8), (C22×C4)⋊23Q8, C2.5(Q8×C23), (C2×C4).33C24, C4.26(C22×D4), C2.11(D4×C23), C4⋊C4.457C23, (C22×C4).626D4, C23.892(C2×D4), (Q8×C23).14C2, C23.150(C2×Q8), (C22×C42).37C2, (C2×Q8).417C23, C22.51(C22×Q8), (C23×C4).706C22, C22.160(C22×D4), (C2×C42).1140C22, (C22×C4).1584C23, (C22×Q8).485C22, (C2×C4)⋊8(C2×Q8), (C2×C4).879(C2×D4), (C22×C4⋊C4).48C2, (C2×C4⋊C4).945C22, SmallGroup(128,2173)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C22×C4⋊Q8
C1C2C22C23C24C23×C4C22×C42 — C22×C4⋊Q8
C1C22 — C22×C4⋊Q8
C1C24 — C22×C4⋊Q8
C1C22 — C22×C4⋊Q8

Generators and relations for C22×C4⋊Q8
 G = < a,b,c,d,e | a2=b2=c4=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 1068 in 812 conjugacy classes, 556 normal (7 characteristic)
C1, C2, C2 [×14], C4 [×24], C4 [×16], C22, C22 [×34], C2×C4 [×100], C2×C4 [×48], Q8 [×64], C23 [×15], C42 [×16], C4⋊C4 [×64], C22×C4 [×66], C22×C4 [×16], C2×Q8 [×32], C2×Q8 [×96], C24, C2×C42 [×12], C2×C4⋊C4 [×48], C4⋊Q8 [×64], C23×C4, C23×C4 [×6], C22×Q8 [×24], C22×Q8 [×16], C22×C42, C22×C4⋊C4 [×4], C2×C4⋊Q8 [×24], Q8×C23 [×2], C22×C4⋊Q8
Quotients: C1, C2 [×31], C22 [×155], D4 [×8], Q8 [×16], C23 [×155], C2×D4 [×28], C2×Q8 [×56], C24 [×31], C4⋊Q8 [×16], C22×D4 [×14], C22×Q8 [×28], C25, C2×C4⋊Q8 [×12], D4×C23, Q8×C23 [×2], C22×C4⋊Q8

Smallest permutation representation of C22×C4⋊Q8
Regular action on 128 points
Generators in S128
(1 24)(2 21)(3 22)(4 23)(5 56)(6 53)(7 54)(8 55)(9 48)(10 45)(11 46)(12 47)(13 64)(14 61)(15 62)(16 63)(17 35)(18 36)(19 33)(20 34)(25 38)(26 39)(27 40)(28 37)(29 43)(30 44)(31 41)(32 42)(49 124)(50 121)(51 122)(52 123)(57 84)(58 81)(59 82)(60 83)(65 109)(66 110)(67 111)(68 112)(69 117)(70 118)(71 119)(72 120)(73 113)(74 114)(75 115)(76 116)(77 125)(78 126)(79 127)(80 128)(85 102)(86 103)(87 104)(88 101)(89 98)(90 99)(91 100)(92 97)(93 107)(94 108)(95 105)(96 106)
(1 18)(2 19)(3 20)(4 17)(5 46)(6 47)(7 48)(8 45)(9 54)(10 55)(11 56)(12 53)(13 58)(14 59)(15 60)(16 57)(21 33)(22 34)(23 35)(24 36)(25 41)(26 42)(27 43)(28 44)(29 40)(30 37)(31 38)(32 39)(49 126)(50 127)(51 128)(52 125)(61 82)(62 83)(63 84)(64 81)(65 108)(66 105)(67 106)(68 107)(69 115)(70 116)(71 113)(72 114)(73 119)(74 120)(75 117)(76 118)(77 123)(78 124)(79 121)(80 122)(85 100)(86 97)(87 98)(88 99)(89 104)(90 101)(91 102)(92 103)(93 112)(94 109)(95 110)(96 111)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 32 57 54)(2 29 58 55)(3 30 59 56)(4 31 60 53)(5 22 44 82)(6 23 41 83)(7 24 42 84)(8 21 43 81)(9 18 39 16)(10 19 40 13)(11 20 37 14)(12 17 38 15)(25 62 47 35)(26 63 48 36)(27 64 45 33)(28 61 46 34)(49 109 90 71)(50 110 91 72)(51 111 92 69)(52 112 89 70)(65 99 119 124)(66 100 120 121)(67 97 117 122)(68 98 118 123)(73 78 108 88)(74 79 105 85)(75 80 106 86)(76 77 107 87)(93 104 116 125)(94 101 113 126)(95 102 114 127)(96 103 115 128)
(1 127 57 102)(2 126 58 101)(3 125 59 104)(4 128 60 103)(5 107 44 76)(6 106 41 75)(7 105 42 74)(8 108 43 73)(9 110 39 72)(10 109 40 71)(11 112 37 70)(12 111 38 69)(13 90 19 49)(14 89 20 52)(15 92 17 51)(16 91 18 50)(21 78 81 88)(22 77 82 87)(23 80 83 86)(24 79 84 85)(25 117 47 67)(26 120 48 66)(27 119 45 65)(28 118 46 68)(29 113 55 94)(30 116 56 93)(31 115 53 96)(32 114 54 95)(33 124 64 99)(34 123 61 98)(35 122 62 97)(36 121 63 100)

G:=sub<Sym(128)| (1,24)(2,21)(3,22)(4,23)(5,56)(6,53)(7,54)(8,55)(9,48)(10,45)(11,46)(12,47)(13,64)(14,61)(15,62)(16,63)(17,35)(18,36)(19,33)(20,34)(25,38)(26,39)(27,40)(28,37)(29,43)(30,44)(31,41)(32,42)(49,124)(50,121)(51,122)(52,123)(57,84)(58,81)(59,82)(60,83)(65,109)(66,110)(67,111)(68,112)(69,117)(70,118)(71,119)(72,120)(73,113)(74,114)(75,115)(76,116)(77,125)(78,126)(79,127)(80,128)(85,102)(86,103)(87,104)(88,101)(89,98)(90,99)(91,100)(92,97)(93,107)(94,108)(95,105)(96,106), (1,18)(2,19)(3,20)(4,17)(5,46)(6,47)(7,48)(8,45)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(21,33)(22,34)(23,35)(24,36)(25,41)(26,42)(27,43)(28,44)(29,40)(30,37)(31,38)(32,39)(49,126)(50,127)(51,128)(52,125)(61,82)(62,83)(63,84)(64,81)(65,108)(66,105)(67,106)(68,107)(69,115)(70,116)(71,113)(72,114)(73,119)(74,120)(75,117)(76,118)(77,123)(78,124)(79,121)(80,122)(85,100)(86,97)(87,98)(88,99)(89,104)(90,101)(91,102)(92,103)(93,112)(94,109)(95,110)(96,111), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,32,57,54)(2,29,58,55)(3,30,59,56)(4,31,60,53)(5,22,44,82)(6,23,41,83)(7,24,42,84)(8,21,43,81)(9,18,39,16)(10,19,40,13)(11,20,37,14)(12,17,38,15)(25,62,47,35)(26,63,48,36)(27,64,45,33)(28,61,46,34)(49,109,90,71)(50,110,91,72)(51,111,92,69)(52,112,89,70)(65,99,119,124)(66,100,120,121)(67,97,117,122)(68,98,118,123)(73,78,108,88)(74,79,105,85)(75,80,106,86)(76,77,107,87)(93,104,116,125)(94,101,113,126)(95,102,114,127)(96,103,115,128), (1,127,57,102)(2,126,58,101)(3,125,59,104)(4,128,60,103)(5,107,44,76)(6,106,41,75)(7,105,42,74)(8,108,43,73)(9,110,39,72)(10,109,40,71)(11,112,37,70)(12,111,38,69)(13,90,19,49)(14,89,20,52)(15,92,17,51)(16,91,18,50)(21,78,81,88)(22,77,82,87)(23,80,83,86)(24,79,84,85)(25,117,47,67)(26,120,48,66)(27,119,45,65)(28,118,46,68)(29,113,55,94)(30,116,56,93)(31,115,53,96)(32,114,54,95)(33,124,64,99)(34,123,61,98)(35,122,62,97)(36,121,63,100)>;

G:=Group( (1,24)(2,21)(3,22)(4,23)(5,56)(6,53)(7,54)(8,55)(9,48)(10,45)(11,46)(12,47)(13,64)(14,61)(15,62)(16,63)(17,35)(18,36)(19,33)(20,34)(25,38)(26,39)(27,40)(28,37)(29,43)(30,44)(31,41)(32,42)(49,124)(50,121)(51,122)(52,123)(57,84)(58,81)(59,82)(60,83)(65,109)(66,110)(67,111)(68,112)(69,117)(70,118)(71,119)(72,120)(73,113)(74,114)(75,115)(76,116)(77,125)(78,126)(79,127)(80,128)(85,102)(86,103)(87,104)(88,101)(89,98)(90,99)(91,100)(92,97)(93,107)(94,108)(95,105)(96,106), (1,18)(2,19)(3,20)(4,17)(5,46)(6,47)(7,48)(8,45)(9,54)(10,55)(11,56)(12,53)(13,58)(14,59)(15,60)(16,57)(21,33)(22,34)(23,35)(24,36)(25,41)(26,42)(27,43)(28,44)(29,40)(30,37)(31,38)(32,39)(49,126)(50,127)(51,128)(52,125)(61,82)(62,83)(63,84)(64,81)(65,108)(66,105)(67,106)(68,107)(69,115)(70,116)(71,113)(72,114)(73,119)(74,120)(75,117)(76,118)(77,123)(78,124)(79,121)(80,122)(85,100)(86,97)(87,98)(88,99)(89,104)(90,101)(91,102)(92,103)(93,112)(94,109)(95,110)(96,111), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,32,57,54)(2,29,58,55)(3,30,59,56)(4,31,60,53)(5,22,44,82)(6,23,41,83)(7,24,42,84)(8,21,43,81)(9,18,39,16)(10,19,40,13)(11,20,37,14)(12,17,38,15)(25,62,47,35)(26,63,48,36)(27,64,45,33)(28,61,46,34)(49,109,90,71)(50,110,91,72)(51,111,92,69)(52,112,89,70)(65,99,119,124)(66,100,120,121)(67,97,117,122)(68,98,118,123)(73,78,108,88)(74,79,105,85)(75,80,106,86)(76,77,107,87)(93,104,116,125)(94,101,113,126)(95,102,114,127)(96,103,115,128), (1,127,57,102)(2,126,58,101)(3,125,59,104)(4,128,60,103)(5,107,44,76)(6,106,41,75)(7,105,42,74)(8,108,43,73)(9,110,39,72)(10,109,40,71)(11,112,37,70)(12,111,38,69)(13,90,19,49)(14,89,20,52)(15,92,17,51)(16,91,18,50)(21,78,81,88)(22,77,82,87)(23,80,83,86)(24,79,84,85)(25,117,47,67)(26,120,48,66)(27,119,45,65)(28,118,46,68)(29,113,55,94)(30,116,56,93)(31,115,53,96)(32,114,54,95)(33,124,64,99)(34,123,61,98)(35,122,62,97)(36,121,63,100) );

G=PermutationGroup([(1,24),(2,21),(3,22),(4,23),(5,56),(6,53),(7,54),(8,55),(9,48),(10,45),(11,46),(12,47),(13,64),(14,61),(15,62),(16,63),(17,35),(18,36),(19,33),(20,34),(25,38),(26,39),(27,40),(28,37),(29,43),(30,44),(31,41),(32,42),(49,124),(50,121),(51,122),(52,123),(57,84),(58,81),(59,82),(60,83),(65,109),(66,110),(67,111),(68,112),(69,117),(70,118),(71,119),(72,120),(73,113),(74,114),(75,115),(76,116),(77,125),(78,126),(79,127),(80,128),(85,102),(86,103),(87,104),(88,101),(89,98),(90,99),(91,100),(92,97),(93,107),(94,108),(95,105),(96,106)], [(1,18),(2,19),(3,20),(4,17),(5,46),(6,47),(7,48),(8,45),(9,54),(10,55),(11,56),(12,53),(13,58),(14,59),(15,60),(16,57),(21,33),(22,34),(23,35),(24,36),(25,41),(26,42),(27,43),(28,44),(29,40),(30,37),(31,38),(32,39),(49,126),(50,127),(51,128),(52,125),(61,82),(62,83),(63,84),(64,81),(65,108),(66,105),(67,106),(68,107),(69,115),(70,116),(71,113),(72,114),(73,119),(74,120),(75,117),(76,118),(77,123),(78,124),(79,121),(80,122),(85,100),(86,97),(87,98),(88,99),(89,104),(90,101),(91,102),(92,103),(93,112),(94,109),(95,110),(96,111)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,32,57,54),(2,29,58,55),(3,30,59,56),(4,31,60,53),(5,22,44,82),(6,23,41,83),(7,24,42,84),(8,21,43,81),(9,18,39,16),(10,19,40,13),(11,20,37,14),(12,17,38,15),(25,62,47,35),(26,63,48,36),(27,64,45,33),(28,61,46,34),(49,109,90,71),(50,110,91,72),(51,111,92,69),(52,112,89,70),(65,99,119,124),(66,100,120,121),(67,97,117,122),(68,98,118,123),(73,78,108,88),(74,79,105,85),(75,80,106,86),(76,77,107,87),(93,104,116,125),(94,101,113,126),(95,102,114,127),(96,103,115,128)], [(1,127,57,102),(2,126,58,101),(3,125,59,104),(4,128,60,103),(5,107,44,76),(6,106,41,75),(7,105,42,74),(8,108,43,73),(9,110,39,72),(10,109,40,71),(11,112,37,70),(12,111,38,69),(13,90,19,49),(14,89,20,52),(15,92,17,51),(16,91,18,50),(21,78,81,88),(22,77,82,87),(23,80,83,86),(24,79,84,85),(25,117,47,67),(26,120,48,66),(27,119,45,65),(28,118,46,68),(29,113,55,94),(30,116,56,93),(31,115,53,96),(32,114,54,95),(33,124,64,99),(34,123,61,98),(35,122,62,97),(36,121,63,100)])

56 conjugacy classes

class 1 2A···2O4A···4X4Y···4AN
order12···24···44···4
size11···12···24···4

56 irreducible representations

dim1111122
type++++++-
imageC1C2C2C2C2D4Q8
kernelC22×C4⋊Q8C22×C42C22×C4⋊C4C2×C4⋊Q8Q8×C23C22×C4C22×C4
# reps114242816

Matrix representation of C22×C4⋊Q8 in GL6(𝔽5)

100000
040000
004000
000400
000010
000001
,
400000
010000
001000
000100
000010
000001
,
100000
040000
002000
002300
000010
000001
,
400000
040000
004000
000400
000001
000040
,
400000
010000
001300
000400
000020
000003

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,2,2,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,0,0,0,0,2,0,0,0,0,0,0,3] >;

C22×C4⋊Q8 in GAP, Magma, Sage, TeX

C_2^2\times C_4\rtimes Q_8
% in TeX

G:=Group("C2^2xC4:Q8");
// GroupNames label

G:=SmallGroup(128,2173);
// by ID

G=gap.SmallGroup(128,2173);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,224,477,232,1430,352]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽