direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C2×C4⋊Q8, C22.25C24, C42.89C22, C23.73C23, (C2×C4)⋊4Q8, C4⋊1(C2×Q8), (C2×C4).86D4, C4.14(C2×D4), C2.5(C22×Q8), C4⋊C4.71C22, (C2×C42).19C2, C22.63(C2×D4), C2.11(C22×D4), (C22×Q8).8C2, C22.19(C2×Q8), (C2×C4).131C23, (C2×Q8).55C22, (C22×C4).124C22, (C2×C4⋊C4).19C2, SmallGroup(64,212)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C4⋊Q8
G = < a,b,c,d | a2=b4=c4=1, d2=c2, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >
Subgroups: 185 in 145 conjugacy classes, 105 normal (7 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×Q8, C2×C42, C2×C4⋊C4, C4⋊Q8, C22×Q8, C2×C4⋊Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C24, C4⋊Q8, C22×D4, C22×Q8, C2×C4⋊Q8
Character table of C2×C4⋊Q8
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | 4S | 4T | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ10 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ15 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ16 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ17 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ22 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ23 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ24 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ25 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ26 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ27 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ28 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
(1 12)(2 9)(3 10)(4 11)(5 24)(6 21)(7 22)(8 23)(13 18)(14 19)(15 20)(16 17)(25 64)(26 61)(27 62)(28 63)(29 44)(30 41)(31 42)(32 43)(33 54)(34 55)(35 56)(36 53)(37 57)(38 58)(39 59)(40 60)(45 50)(46 51)(47 52)(48 49)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 19 29 5)(2 20 30 6)(3 17 31 7)(4 18 32 8)(9 15 41 21)(10 16 42 22)(11 13 43 23)(12 14 44 24)(25 35 46 57)(26 36 47 58)(27 33 48 59)(28 34 45 60)(37 64 56 51)(38 61 53 52)(39 62 54 49)(40 63 55 50)
(1 26 29 47)(2 25 30 46)(3 28 31 45)(4 27 32 48)(5 36 19 58)(6 35 20 57)(7 34 17 60)(8 33 18 59)(9 64 41 51)(10 63 42 50)(11 62 43 49)(12 61 44 52)(13 39 23 54)(14 38 24 53)(15 37 21 56)(16 40 22 55)
G:=sub<Sym(64)| (1,12)(2,9)(3,10)(4,11)(5,24)(6,21)(7,22)(8,23)(13,18)(14,19)(15,20)(16,17)(25,64)(26,61)(27,62)(28,63)(29,44)(30,41)(31,42)(32,43)(33,54)(34,55)(35,56)(36,53)(37,57)(38,58)(39,59)(40,60)(45,50)(46,51)(47,52)(48,49), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,29,5)(2,20,30,6)(3,17,31,7)(4,18,32,8)(9,15,41,21)(10,16,42,22)(11,13,43,23)(12,14,44,24)(25,35,46,57)(26,36,47,58)(27,33,48,59)(28,34,45,60)(37,64,56,51)(38,61,53,52)(39,62,54,49)(40,63,55,50), (1,26,29,47)(2,25,30,46)(3,28,31,45)(4,27,32,48)(5,36,19,58)(6,35,20,57)(7,34,17,60)(8,33,18,59)(9,64,41,51)(10,63,42,50)(11,62,43,49)(12,61,44,52)(13,39,23,54)(14,38,24,53)(15,37,21,56)(16,40,22,55)>;
G:=Group( (1,12)(2,9)(3,10)(4,11)(5,24)(6,21)(7,22)(8,23)(13,18)(14,19)(15,20)(16,17)(25,64)(26,61)(27,62)(28,63)(29,44)(30,41)(31,42)(32,43)(33,54)(34,55)(35,56)(36,53)(37,57)(38,58)(39,59)(40,60)(45,50)(46,51)(47,52)(48,49), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,19,29,5)(2,20,30,6)(3,17,31,7)(4,18,32,8)(9,15,41,21)(10,16,42,22)(11,13,43,23)(12,14,44,24)(25,35,46,57)(26,36,47,58)(27,33,48,59)(28,34,45,60)(37,64,56,51)(38,61,53,52)(39,62,54,49)(40,63,55,50), (1,26,29,47)(2,25,30,46)(3,28,31,45)(4,27,32,48)(5,36,19,58)(6,35,20,57)(7,34,17,60)(8,33,18,59)(9,64,41,51)(10,63,42,50)(11,62,43,49)(12,61,44,52)(13,39,23,54)(14,38,24,53)(15,37,21,56)(16,40,22,55) );
G=PermutationGroup([[(1,12),(2,9),(3,10),(4,11),(5,24),(6,21),(7,22),(8,23),(13,18),(14,19),(15,20),(16,17),(25,64),(26,61),(27,62),(28,63),(29,44),(30,41),(31,42),(32,43),(33,54),(34,55),(35,56),(36,53),(37,57),(38,58),(39,59),(40,60),(45,50),(46,51),(47,52),(48,49)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,19,29,5),(2,20,30,6),(3,17,31,7),(4,18,32,8),(9,15,41,21),(10,16,42,22),(11,13,43,23),(12,14,44,24),(25,35,46,57),(26,36,47,58),(27,33,48,59),(28,34,45,60),(37,64,56,51),(38,61,53,52),(39,62,54,49),(40,63,55,50)], [(1,26,29,47),(2,25,30,46),(3,28,31,45),(4,27,32,48),(5,36,19,58),(6,35,20,57),(7,34,17,60),(8,33,18,59),(9,64,41,51),(10,63,42,50),(11,62,43,49),(12,61,44,52),(13,39,23,54),(14,38,24,53),(15,37,21,56),(16,40,22,55)]])
C2×C4⋊Q8 is a maximal subgroup of
C42.414D4 C42.415D4 C42.416D4 C42.83D4 C42.85D4 C4⋊Q8⋊15C4 C42.431D4 C42.111D4 C42.114D4 C42.117D4 C42.121D4 C42.122D4 C42.436D4 C42.125D4 M4(2)⋊8Q8 C42.130D4 (C2×C4)⋊3SD16 (C2×C4)⋊2Q16 (C2×D4)⋊Q8 (C2×Q8)⋊Q8 C4⋊C4.95D4 C4⋊C4⋊Q8 (C2×C8)⋊Q8 C42.161D4 C42⋊4Q8 C23.247C24 C23.251C24 C23.263C24 C23.329C24 C24.264C23 C23.334C24 C24.267C23 C24.568C23 C23.346C24 C23.351C24 C23.352C24 C23.391C24 C23.392C24 C42.167D4 C42.168D4 C42.169D4 C42.170D4 C42⋊6Q8 C42⋊7Q8 C42.173D4 C42.176D4 C42.177D4 C42.186D4 C42.187D4 C42.193D4 C42.195D4 C42.196D4 C42⋊10Q8 C23.574C24 C24.385C23 C23.613C24 C23.616C24 C24.421C23 C23.631C24 C23.634C24 C42.200D4 C42.440D4 C43⋊12C2 C42⋊18Q8 C42⋊19Q8 C42.445D4 C42.448D4 C42.241D4 C42.243D4 M4(2)⋊8D4 M4(2)⋊5Q8 C42.264D4 C42.267D4 C42.276D4 C42.278D4 C42.279D4 C42.281D4 C42.282D4 C42.290D4 C42.291D4 C2×D4×Q8 C2×Q82 C22.88C25 C22.92C25 C22.98C25 C22.100C25 C22.133C25 C22.141C25
C2×C4⋊Q8 is a maximal quotient of
C42⋊5Q8 C23.334C24 C24.568C23 C23.402C24 C42.169D4 C23.449C24 C42⋊6Q8 C42⋊7Q8 C42.35Q8 C42.176D4 C23.483C24 C42.181D4 C23.559C24 C42⋊10Q8 C42.440D4 C43.15C2 C42⋊18Q8 C42⋊19Q8 C42.364D4 C42.252D4 M4(2)⋊3Q8 M4(2)⋊4Q8 M4(2)⋊5Q8 M4(2)⋊6Q8
Matrix representation of C2×C4⋊Q8 ►in GL5(𝔽5)
4 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 4 | 0 |
4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(5))| [4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,1,0],[4,0,0,0,0,0,0,1,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,3,0,0,0,0,0,2,0,0,0,0,0,4,0,0,0,0,0,1] >;
C2×C4⋊Q8 in GAP, Magma, Sage, TeX
C_2\times C_4\rtimes Q_8
% in TeX
G:=Group("C2xC4:Q8");
// GroupNames label
G:=SmallGroup(64,212);
// by ID
G=gap.SmallGroup(64,212);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,96,217,103,650,158]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^4=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations
Export