Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D9

Direct product G=N×Q with N=C2×C4 and Q=D9
dρLabelID
C2×C4×D972C2xC4xD9144,38

Semidirect products G=N:Q with N=C2×C4 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D9 = D18⋊C4φ: D9/C9C2 ⊆ Aut C2×C472(C2xC4):1D9144,14
(C2×C4)⋊2D9 = C2×D36φ: D9/C9C2 ⊆ Aut C2×C472(C2xC4):2D9144,39
(C2×C4)⋊3D9 = D365C2φ: D9/C9C2 ⊆ Aut C2×C4722(C2xC4):3D9144,40

Non-split extensions G=N.Q with N=C2×C4 and Q=D9
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D9 = Dic9⋊C4φ: D9/C9C2 ⊆ Aut C2×C4144(C2xC4).1D9144,12
(C2×C4).2D9 = C4.Dic9φ: D9/C9C2 ⊆ Aut C2×C4722(C2xC4).2D9144,10
(C2×C4).3D9 = C4⋊Dic9φ: D9/C9C2 ⊆ Aut C2×C4144(C2xC4).3D9144,13
(C2×C4).4D9 = C2×Dic18φ: D9/C9C2 ⊆ Aut C2×C4144(C2xC4).4D9144,37
(C2×C4).5D9 = C2×C9⋊C8central extension (φ=1)144(C2xC4).5D9144,9
(C2×C4).6D9 = C4×Dic9central extension (φ=1)144(C2xC4).6D9144,11

׿
×
𝔽