Extensions 1→N→G→Q→1 with N=C4×D9 and Q=C2

Direct product G=N×Q with N=C4×D9 and Q=C2
dρLabelID
C2×C4×D972C2xC4xD9144,38

Semidirect products G=N:Q with N=C4×D9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D9)⋊1C2 = D4×D9φ: C2/C1C2 ⊆ Out C4×D9364+(C4xD9):1C2144,41
(C4×D9)⋊2C2 = D42D9φ: C2/C1C2 ⊆ Out C4×D9724-(C4xD9):2C2144,42
(C4×D9)⋊3C2 = Q83D9φ: C2/C1C2 ⊆ Out C4×D9724+(C4xD9):3C2144,44
(C4×D9)⋊4C2 = D365C2φ: C2/C1C2 ⊆ Out C4×D9722(C4xD9):4C2144,40

Non-split extensions G=N.Q with N=C4×D9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D9).1C2 = Q8×D9φ: C2/C1C2 ⊆ Out C4×D9724-(C4xD9).1C2144,43
(C4×D9).2C2 = C8⋊D9φ: C2/C1C2 ⊆ Out C4×D9722(C4xD9).2C2144,6
(C4×D9).3C2 = C8×D9φ: trivial image722(C4xD9).3C2144,5

׿
×
𝔽