direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Q8×D9, C12.7D6, C4.6D18, Dic18⋊4C2, C36.6C22, C18.7C23, D18.5C22, Dic9.4C22, C9⋊2(C2×Q8), C3.(S3×Q8), (Q8×C9)⋊2C2, (C4×D9).1C2, (C3×Q8).7S3, C2.8(C22×D9), C6.25(C22×S3), SmallGroup(144,43)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8×D9
G = < a,b,c,d | a4=c9=d2=1, b2=a2, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 187 in 57 conjugacy classes, 31 normal (11 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C2×C4, Q8, Q8, C9, Dic3, C12, D6, C2×Q8, D9, C18, Dic6, C4×S3, C3×Q8, Dic9, C36, D18, S3×Q8, Dic18, C4×D9, Q8×C9, Q8×D9
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, D9, C22×S3, D18, S3×Q8, C22×D9, Q8×D9
Character table of Q8×D9
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6 | 9A | 9B | 9C | 12A | 12B | 12C | 18A | 18B | 18C | 36A | 36B | 36C | 36D | 36E | 36F | 36G | 36H | 36I | |
size | 1 | 1 | 9 | 9 | 2 | 2 | 2 | 2 | 18 | 18 | 18 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -2 | -2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | 2 | -2 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | -2 | 2 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -1 | -1 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | orthogonal lifted from D9 |
ρ14 | 2 | 2 | 0 | 0 | -1 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -1 | 1 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | ζ98+ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | ζ97+ζ92 | orthogonal lifted from D18 |
ρ15 | 2 | 2 | 0 | 0 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 1 | 1 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -ζ98-ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ97-ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ16 | 2 | 2 | 0 | 0 | -1 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -1 | 1 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | ζ97+ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | ζ95+ζ94 | orthogonal lifted from D18 |
ρ17 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -1 | -1 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | orthogonal lifted from D9 |
ρ18 | 2 | 2 | 0 | 0 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 1 | 1 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -ζ95-ζ94 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ98-ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ19 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | 1 | -1 | 1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -ζ98-ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | -ζ97-ζ92 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ95-ζ94 | orthogonal lifted from D18 |
ρ20 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | -1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -1 | -1 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | ζ98+ζ9 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | ζ95+ζ94 | ζ95+ζ94 | orthogonal lifted from D9 |
ρ21 | 2 | 2 | 0 | 0 | -1 | -2 | 2 | -2 | 0 | 0 | 0 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | -1 | 1 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | ζ97+ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | ζ95+ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | ζ98+ζ9 | orthogonal lifted from D18 |
ρ22 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 1 | -1 | 1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -ζ97-ζ92 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ95-ζ94 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ23 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | 0 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | 1 | -1 | 1 | ζ98+ζ9 | ζ95+ζ94 | ζ97+ζ92 | -ζ95-ζ94 | ζ95+ζ94 | ζ98+ζ9 | ζ97+ζ92 | -ζ98-ζ9 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ97-ζ92 | -ζ97-ζ92 | orthogonal lifted from D18 |
ρ24 | 2 | 2 | 0 | 0 | -1 | 2 | -2 | -2 | 0 | 0 | 0 | -1 | ζ97+ζ92 | ζ98+ζ9 | ζ95+ζ94 | 1 | 1 | -1 | ζ95+ζ94 | ζ97+ζ92 | ζ98+ζ9 | -ζ97-ζ92 | -ζ97-ζ92 | -ζ95-ζ94 | -ζ98-ζ9 | -ζ95-ζ94 | ζ97+ζ92 | ζ95+ζ94 | ζ98+ζ9 | -ζ98-ζ9 | orthogonal lifted from D18 |
ρ25 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ26 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ27 | 4 | -4 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | -2 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Q8, Schur index 2 |
ρ28 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | 0 | 0 | 0 | -2ζ95-2ζ94 | -2ζ97-2ζ92 | -2ζ98-2ζ9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ29 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2ζ98+2ζ9 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | 0 | 0 | 0 | -2ζ97-2ζ92 | -2ζ98-2ζ9 | -2ζ95-2ζ94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ30 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2ζ95+2ζ94 | 2ζ97+2ζ92 | 2ζ98+2ζ9 | 0 | 0 | 0 | -2ζ98-2ζ9 | -2ζ95-2ζ94 | -2ζ97-2ζ92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 32 14 23)(2 33 15 24)(3 34 16 25)(4 35 17 26)(5 36 18 27)(6 28 10 19)(7 29 11 20)(8 30 12 21)(9 31 13 22)(37 55 46 64)(38 56 47 65)(39 57 48 66)(40 58 49 67)(41 59 50 68)(42 60 51 69)(43 61 52 70)(44 62 53 71)(45 63 54 72)
(1 50 14 41)(2 51 15 42)(3 52 16 43)(4 53 17 44)(5 54 18 45)(6 46 10 37)(7 47 11 38)(8 48 12 39)(9 49 13 40)(19 64 28 55)(20 65 29 56)(21 66 30 57)(22 67 31 58)(23 68 32 59)(24 69 33 60)(25 70 34 61)(26 71 35 62)(27 72 36 63)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)
(1 13)(2 12)(3 11)(4 10)(5 18)(6 17)(7 16)(8 15)(9 14)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(27 36)(37 53)(38 52)(39 51)(40 50)(41 49)(42 48)(43 47)(44 46)(45 54)(55 71)(56 70)(57 69)(58 68)(59 67)(60 66)(61 65)(62 64)(63 72)
G:=sub<Sym(72)| (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72), (1,50,14,41)(2,51,15,42)(3,52,16,43)(4,53,17,44)(5,54,18,45)(6,46,10,37)(7,47,11,38)(8,48,12,39)(9,49,13,40)(19,64,28,55)(20,65,29,56)(21,66,30,57)(22,67,31,58)(23,68,32,59)(24,69,33,60)(25,70,34,61)(26,71,35,62)(27,72,36,63), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(45,54)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72)>;
G:=Group( (1,32,14,23)(2,33,15,24)(3,34,16,25)(4,35,17,26)(5,36,18,27)(6,28,10,19)(7,29,11,20)(8,30,12,21)(9,31,13,22)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72), (1,50,14,41)(2,51,15,42)(3,52,16,43)(4,53,17,44)(5,54,18,45)(6,46,10,37)(7,47,11,38)(8,48,12,39)(9,49,13,40)(19,64,28,55)(20,65,29,56)(21,66,30,57)(22,67,31,58)(23,68,32,59)(24,69,33,60)(25,70,34,61)(26,71,35,62)(27,72,36,63), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72), (1,13)(2,12)(3,11)(4,10)(5,18)(6,17)(7,16)(8,15)(9,14)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(27,36)(37,53)(38,52)(39,51)(40,50)(41,49)(42,48)(43,47)(44,46)(45,54)(55,71)(56,70)(57,69)(58,68)(59,67)(60,66)(61,65)(62,64)(63,72) );
G=PermutationGroup([[(1,32,14,23),(2,33,15,24),(3,34,16,25),(4,35,17,26),(5,36,18,27),(6,28,10,19),(7,29,11,20),(8,30,12,21),(9,31,13,22),(37,55,46,64),(38,56,47,65),(39,57,48,66),(40,58,49,67),(41,59,50,68),(42,60,51,69),(43,61,52,70),(44,62,53,71),(45,63,54,72)], [(1,50,14,41),(2,51,15,42),(3,52,16,43),(4,53,17,44),(5,54,18,45),(6,46,10,37),(7,47,11,38),(8,48,12,39),(9,49,13,40),(19,64,28,55),(20,65,29,56),(21,66,30,57),(22,67,31,58),(23,68,32,59),(24,69,33,60),(25,70,34,61),(26,71,35,62),(27,72,36,63)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72)], [(1,13),(2,12),(3,11),(4,10),(5,18),(6,17),(7,16),(8,15),(9,14),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(27,36),(37,53),(38,52),(39,51),(40,50),(41,49),(42,48),(43,47),(44,46),(45,54),(55,71),(56,70),(57,69),(58,68),(59,67),(60,66),(61,65),(62,64),(63,72)]])
Q8×D9 is a maximal subgroup of
SD16⋊D9 Q16⋊D9 Q8.15D18 D4.10D18 D18.A4 Dic18⋊S3
Q8×D9 is a maximal quotient of
Dic9⋊3Q8 C36⋊Q8 Dic9.Q8 D18⋊Q8 D18⋊2Q8 Dic9⋊Q8 D18⋊3Q8 Dic18⋊S3
Matrix representation of Q8×D9 ►in GL4(𝔽37) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 36 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 23 | 32 |
0 | 0 | 32 | 14 |
17 | 11 | 0 | 0 |
26 | 6 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
17 | 11 | 0 | 0 |
31 | 20 | 0 | 0 |
0 | 0 | 36 | 0 |
0 | 0 | 0 | 36 |
G:=sub<GL(4,GF(37))| [1,0,0,0,0,1,0,0,0,0,0,36,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,23,32,0,0,32,14],[17,26,0,0,11,6,0,0,0,0,1,0,0,0,0,1],[17,31,0,0,11,20,0,0,0,0,36,0,0,0,0,36] >;
Q8×D9 in GAP, Magma, Sage, TeX
Q_8\times D_9
% in TeX
G:=Group("Q8xD9");
// GroupNames label
G:=SmallGroup(144,43);
// by ID
G=gap.SmallGroup(144,43);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,116,50,2404,208,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^9=d^2=1,b^2=a^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export