Extensions 1→N→G→Q→1 with N=C6 and Q=Dic6

Direct product G=N×Q with N=C6 and Q=Dic6
dρLabelID
C6×Dic648C6xDic6144,158

Semidirect products G=N:Q with N=C6 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C61Dic6 = C2×C322Q8φ: Dic6/Dic3C2 ⊆ Aut C648C6:1Dic6144,152
C62Dic6 = C2×C324Q8φ: Dic6/C12C2 ⊆ Aut C6144C6:2Dic6144,168

Non-split extensions G=N.Q with N=C6 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C6.1Dic6 = Dic3⋊Dic3φ: Dic6/Dic3C2 ⊆ Aut C648C6.1Dic6144,66
C6.2Dic6 = C62.C22φ: Dic6/Dic3C2 ⊆ Aut C648C6.2Dic6144,67
C6.3Dic6 = Dic9⋊C4φ: Dic6/C12C2 ⊆ Aut C6144C6.3Dic6144,12
C6.4Dic6 = C4⋊Dic9φ: Dic6/C12C2 ⊆ Aut C6144C6.4Dic6144,13
C6.5Dic6 = C2×Dic18φ: Dic6/C12C2 ⊆ Aut C6144C6.5Dic6144,37
C6.6Dic6 = C6.Dic6φ: Dic6/C12C2 ⊆ Aut C6144C6.6Dic6144,93
C6.7Dic6 = C12⋊Dic3φ: Dic6/C12C2 ⊆ Aut C6144C6.7Dic6144,94
C6.8Dic6 = C3×Dic3⋊C4central extension (φ=1)48C6.8Dic6144,77
C6.9Dic6 = C3×C4⋊Dic3central extension (φ=1)48C6.9Dic6144,78

׿
×
𝔽