Copied to
clipboard

G = C6.Dic6order 144 = 24·32

4th non-split extension by C6 of Dic6 acting via Dic6/C12=C2

metabelian, supersoluble, monomial

Aliases: C6.6Dic6, C62.22C22, (C3×C6).6Q8, C6.14(C4×S3), C328(C4⋊C4), (C2×C12).4S3, (C6×C12).2C2, C3⋊Dic33C4, (C3×C6).33D4, (C2×C6).31D6, C33(Dic3⋊C4), C6.20(C3⋊D4), C2.1(C327D4), C2.1(C324Q8), C2.4(C4×C3⋊S3), (C2×C4).1(C3⋊S3), (C3×C6).25(C2×C4), C22.4(C2×C3⋊S3), (C2×C3⋊Dic3).4C2, SmallGroup(144,93)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C6.Dic6
C1C3C32C3×C6C62C2×C3⋊Dic3 — C6.Dic6
C32C3×C6 — C6.Dic6
C1C22C2×C4

Generators and relations for C6.Dic6
 G = < a,b,c | a6=b12=1, c2=a3b6, ab=ba, cac-1=a-1, cbc-1=a3b-1 >

Subgroups: 202 in 78 conjugacy classes, 41 normal (15 characteristic)
C1, C2, C3, C4, C22, C6, C2×C4, C2×C4, C32, Dic3, C12, C2×C6, C4⋊C4, C3×C6, C2×Dic3, C2×C12, C3⋊Dic3, C3⋊Dic3, C3×C12, C62, Dic3⋊C4, C2×C3⋊Dic3, C6×C12, C6.Dic6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, D6, C4⋊C4, C3⋊S3, Dic6, C4×S3, C3⋊D4, C2×C3⋊S3, Dic3⋊C4, C324Q8, C4×C3⋊S3, C327D4, C6.Dic6

Smallest permutation representation of C6.Dic6
Regular action on 144 points
Generators in S144
(1 56 36 132 91 133)(2 57 25 121 92 134)(3 58 26 122 93 135)(4 59 27 123 94 136)(5 60 28 124 95 137)(6 49 29 125 96 138)(7 50 30 126 85 139)(8 51 31 127 86 140)(9 52 32 128 87 141)(10 53 33 129 88 142)(11 54 34 130 89 143)(12 55 35 131 90 144)(13 42 77 98 118 72)(14 43 78 99 119 61)(15 44 79 100 120 62)(16 45 80 101 109 63)(17 46 81 102 110 64)(18 47 82 103 111 65)(19 48 83 104 112 66)(20 37 84 105 113 67)(21 38 73 106 114 68)(22 39 74 107 115 69)(23 40 75 108 116 70)(24 41 76 97 117 71)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 78 126 67)(2 72 127 83)(3 76 128 65)(4 70 129 81)(5 74 130 63)(6 68 131 79)(7 84 132 61)(8 66 121 77)(9 82 122 71)(10 64 123 75)(11 80 124 69)(12 62 125 73)(13 31 104 134)(14 139 105 36)(15 29 106 144)(16 137 107 34)(17 27 108 142)(18 135 97 32)(19 25 98 140)(20 133 99 30)(21 35 100 138)(22 143 101 28)(23 33 102 136)(24 141 103 26)(37 91 119 50)(38 55 120 96)(39 89 109 60)(40 53 110 94)(41 87 111 58)(42 51 112 92)(43 85 113 56)(44 49 114 90)(45 95 115 54)(46 59 116 88)(47 93 117 52)(48 57 118 86)

G:=sub<Sym(144)| (1,56,36,132,91,133)(2,57,25,121,92,134)(3,58,26,122,93,135)(4,59,27,123,94,136)(5,60,28,124,95,137)(6,49,29,125,96,138)(7,50,30,126,85,139)(8,51,31,127,86,140)(9,52,32,128,87,141)(10,53,33,129,88,142)(11,54,34,130,89,143)(12,55,35,131,90,144)(13,42,77,98,118,72)(14,43,78,99,119,61)(15,44,79,100,120,62)(16,45,80,101,109,63)(17,46,81,102,110,64)(18,47,82,103,111,65)(19,48,83,104,112,66)(20,37,84,105,113,67)(21,38,73,106,114,68)(22,39,74,107,115,69)(23,40,75,108,116,70)(24,41,76,97,117,71), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,78,126,67)(2,72,127,83)(3,76,128,65)(4,70,129,81)(5,74,130,63)(6,68,131,79)(7,84,132,61)(8,66,121,77)(9,82,122,71)(10,64,123,75)(11,80,124,69)(12,62,125,73)(13,31,104,134)(14,139,105,36)(15,29,106,144)(16,137,107,34)(17,27,108,142)(18,135,97,32)(19,25,98,140)(20,133,99,30)(21,35,100,138)(22,143,101,28)(23,33,102,136)(24,141,103,26)(37,91,119,50)(38,55,120,96)(39,89,109,60)(40,53,110,94)(41,87,111,58)(42,51,112,92)(43,85,113,56)(44,49,114,90)(45,95,115,54)(46,59,116,88)(47,93,117,52)(48,57,118,86)>;

G:=Group( (1,56,36,132,91,133)(2,57,25,121,92,134)(3,58,26,122,93,135)(4,59,27,123,94,136)(5,60,28,124,95,137)(6,49,29,125,96,138)(7,50,30,126,85,139)(8,51,31,127,86,140)(9,52,32,128,87,141)(10,53,33,129,88,142)(11,54,34,130,89,143)(12,55,35,131,90,144)(13,42,77,98,118,72)(14,43,78,99,119,61)(15,44,79,100,120,62)(16,45,80,101,109,63)(17,46,81,102,110,64)(18,47,82,103,111,65)(19,48,83,104,112,66)(20,37,84,105,113,67)(21,38,73,106,114,68)(22,39,74,107,115,69)(23,40,75,108,116,70)(24,41,76,97,117,71), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,78,126,67)(2,72,127,83)(3,76,128,65)(4,70,129,81)(5,74,130,63)(6,68,131,79)(7,84,132,61)(8,66,121,77)(9,82,122,71)(10,64,123,75)(11,80,124,69)(12,62,125,73)(13,31,104,134)(14,139,105,36)(15,29,106,144)(16,137,107,34)(17,27,108,142)(18,135,97,32)(19,25,98,140)(20,133,99,30)(21,35,100,138)(22,143,101,28)(23,33,102,136)(24,141,103,26)(37,91,119,50)(38,55,120,96)(39,89,109,60)(40,53,110,94)(41,87,111,58)(42,51,112,92)(43,85,113,56)(44,49,114,90)(45,95,115,54)(46,59,116,88)(47,93,117,52)(48,57,118,86) );

G=PermutationGroup([[(1,56,36,132,91,133),(2,57,25,121,92,134),(3,58,26,122,93,135),(4,59,27,123,94,136),(5,60,28,124,95,137),(6,49,29,125,96,138),(7,50,30,126,85,139),(8,51,31,127,86,140),(9,52,32,128,87,141),(10,53,33,129,88,142),(11,54,34,130,89,143),(12,55,35,131,90,144),(13,42,77,98,118,72),(14,43,78,99,119,61),(15,44,79,100,120,62),(16,45,80,101,109,63),(17,46,81,102,110,64),(18,47,82,103,111,65),(19,48,83,104,112,66),(20,37,84,105,113,67),(21,38,73,106,114,68),(22,39,74,107,115,69),(23,40,75,108,116,70),(24,41,76,97,117,71)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,78,126,67),(2,72,127,83),(3,76,128,65),(4,70,129,81),(5,74,130,63),(6,68,131,79),(7,84,132,61),(8,66,121,77),(9,82,122,71),(10,64,123,75),(11,80,124,69),(12,62,125,73),(13,31,104,134),(14,139,105,36),(15,29,106,144),(16,137,107,34),(17,27,108,142),(18,135,97,32),(19,25,98,140),(20,133,99,30),(21,35,100,138),(22,143,101,28),(23,33,102,136),(24,141,103,26),(37,91,119,50),(38,55,120,96),(39,89,109,60),(40,53,110,94),(41,87,111,58),(42,51,112,92),(43,85,113,56),(44,49,114,90),(45,95,115,54),(46,59,116,88),(47,93,117,52),(48,57,118,86)]])

C6.Dic6 is a maximal subgroup of
Dic35Dic6  C62.9C23  C62.16C23  C62.17C23  D6⋊Dic6  C62.28C23  C62.29C23  C62.37C23  S3×Dic3⋊C4  C62.47C23  C62.49C23  C62.54C23  C62.55C23  D61Dic6  D64Dic6  C62.75C23  C4×C324Q8  C12.25Dic6  C12216C2  C1222C2  C62.221C23  C626Q8  C62.223C23  C62.225C23  C62.227C23  C62.228C23  C62.231C23  C122Dic6  C62.233C23  C62.234C23  C4⋊C4×C3⋊S3  C62.238C23  C62.240C23  C62.242C23  C6210Q8  C4×C327D4  C62.129D4  C62.72D4  C6214D4  C62.259C23  C62.261C23  C62.19D6  C6.Dic18  C62.81D6  C62.82D6  C62.146D6
C6.Dic6 is a maximal quotient of
C12.9Dic6  C12.10Dic6  C12.30Dic6  C62.8Q8  C62.15Q8  C6.Dic18  C62.29D6  C62.81D6  C62.82D6  C62.146D6

42 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B4C4D4E4F6A···6L12A···12P
order122233334444446···612···12
size1111222222181818182···22···2

42 irreducible representations

dim11112222222
type+++++-+-
imageC1C2C2C4S3D4Q8D6Dic6C4×S3C3⋊D4
kernelC6.Dic6C2×C3⋊Dic3C6×C12C3⋊Dic3C2×C12C3×C6C3×C6C2×C6C6C6C6
# reps12144114888

Matrix representation of C6.Dic6 in GL4(𝔽13) generated by

10000
0400
0001
00121
,
8000
0800
0022
00114
,
0100
1000
0080
0085
G:=sub<GL(4,GF(13))| [10,0,0,0,0,4,0,0,0,0,0,12,0,0,1,1],[8,0,0,0,0,8,0,0,0,0,2,11,0,0,2,4],[0,1,0,0,1,0,0,0,0,0,8,8,0,0,0,5] >;

C6.Dic6 in GAP, Magma, Sage, TeX

C_6.{\rm Dic}_6
% in TeX

G:=Group("C6.Dic6");
// GroupNames label

G:=SmallGroup(144,93);
// by ID

G=gap.SmallGroup(144,93);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,48,121,31,964,3461]);
// Polycyclic

G:=Group<a,b,c|a^6=b^12=1,c^2=a^3*b^6,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=a^3*b^-1>;
// generators/relations

׿
×
𝔽