Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C6

Direct product G=N×Q with N=C2×Dic3 and Q=C6

Semidirect products G=N:Q with N=C2×Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1C6 = C3×D6⋊C4φ: C6/C3C2 ⊆ Out C2×Dic348(C2xDic3):1C6144,79
(C2×Dic3)⋊2C6 = C3×C6.D4φ: C6/C3C2 ⊆ Out C2×Dic324(C2xDic3):2C6144,84
(C2×Dic3)⋊3C6 = C3×D42S3φ: C6/C3C2 ⊆ Out C2×Dic3244(C2xDic3):3C6144,163
(C2×Dic3)⋊4C6 = C6×C3⋊D4φ: C6/C3C2 ⊆ Out C2×Dic324(C2xDic3):4C6144,167
(C2×Dic3)⋊5C6 = S3×C2×C12φ: trivial image48(C2xDic3):5C6144,159

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C6
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1C6 = C3×Dic3⋊C4φ: C6/C3C2 ⊆ Out C2×Dic348(C2xDic3).1C6144,77
(C2×Dic3).2C6 = C3×C4⋊Dic3φ: C6/C3C2 ⊆ Out C2×Dic348(C2xDic3).2C6144,78
(C2×Dic3).3C6 = C6×Dic6φ: C6/C3C2 ⊆ Out C2×Dic348(C2xDic3).3C6144,158
(C2×Dic3).4C6 = Dic3×C12φ: trivial image48(C2xDic3).4C6144,76