direct product, metabelian, supersoluble, monomial
Aliases: C6×C3⋊D4, C62⋊7C22, (C2×C6)⋊9D6, C3⋊3(C6×D4), (C3×C6)⋊6D4, C6⋊2(C3×D4), D6⋊3(C2×C6), C22⋊4(S3×C6), (C2×C62)⋊2C2, C23⋊3(C3×S3), (C22×C6)⋊4C6, (C22×C6)⋊3S3, C32⋊12(C2×D4), (C22×S3)⋊4C6, (S3×C6)⋊9C22, (C2×Dic3)⋊4C6, Dic3⋊2(C2×C6), (C6×Dic3)⋊10C2, C6.10(C22×C6), (C3×C6).28C23, C6.49(C22×S3), (C3×Dic3)⋊9C22, (S3×C2×C6)⋊6C2, (C2×C6)⋊5(C2×C6), C2.10(S3×C2×C6), SmallGroup(144,167)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6×C3⋊D4
G = < a,b,c,d | a6=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 248 in 124 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C23, C32, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C2×D4, C3×S3, C3×C6, C3×C6, C3×C6, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, C3×Dic3, S3×C6, S3×C6, C62, C62, C62, C2×C3⋊D4, C6×D4, C6×Dic3, C3×C3⋊D4, S3×C2×C6, C2×C62, C6×C3⋊D4
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C3×S3, C3⋊D4, C3×D4, C22×S3, C22×C6, S3×C6, C2×C3⋊D4, C6×D4, C3×C3⋊D4, S3×C2×C6, C6×C3⋊D4
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 23 21)(20 24 22)
(1 20 15 11)(2 21 16 12)(3 22 17 7)(4 23 18 8)(5 24 13 9)(6 19 14 10)
(1 11)(2 12)(3 7)(4 8)(5 9)(6 10)(13 24)(14 19)(15 20)(16 21)(17 22)(18 23)
G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,23,21)(20,24,22), (1,20,15,11)(2,21,16,12)(3,22,17,7)(4,23,18,8)(5,24,13,9)(6,19,14,10), (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,23,21)(20,24,22), (1,20,15,11)(2,21,16,12)(3,22,17,7)(4,23,18,8)(5,24,13,9)(6,19,14,10), (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,23,21),(20,24,22)], [(1,20,15,11),(2,21,16,12),(3,22,17,7),(4,23,18,8),(5,24,13,9),(6,19,14,10)], [(1,11),(2,12),(3,7),(4,8),(5,9),(6,10),(13,24),(14,19),(15,20),(16,21),(17,22),(18,23)]])
G:=TransitiveGroup(24,248);
C6×C3⋊D4 is a maximal subgroup of
C62.31D4 C62.100C23 C62.101C23 C62.56D4 C62.57D4 C62.111C23 C62.112C23 C62.113C23 C62.115C23 C62⋊4D4 C62⋊6D4 C62.121C23 C62⋊7D4 C62⋊8D4 C62.125C23 C32⋊2+ 1+4 S3×C6×D4
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 6A | ··· | 6F | 6G | ··· | 6AE | 6AF | 6AG | 6AH | 6AI | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 1 | ··· | 1 | 2 | ··· | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | S3 | D4 | D6 | C3×S3 | C3⋊D4 | C3×D4 | S3×C6 | C3×C3⋊D4 |
kernel | C6×C3⋊D4 | C6×Dic3 | C3×C3⋊D4 | S3×C2×C6 | C2×C62 | C2×C3⋊D4 | C2×Dic3 | C3⋊D4 | C22×S3 | C22×C6 | C22×C6 | C3×C6 | C2×C6 | C23 | C6 | C6 | C22 | C2 |
# reps | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 1 | 2 | 3 | 2 | 4 | 4 | 6 | 8 |
Matrix representation of C6×C3⋊D4 ►in GL3(𝔽13) generated by
4 | 0 | 0 |
0 | 10 | 0 |
0 | 0 | 10 |
1 | 0 | 0 |
0 | 3 | 0 |
0 | 0 | 9 |
1 | 0 | 0 |
0 | 0 | 1 |
0 | 12 | 0 |
1 | 0 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
G:=sub<GL(3,GF(13))| [4,0,0,0,10,0,0,0,10],[1,0,0,0,3,0,0,0,9],[1,0,0,0,0,12,0,1,0],[1,0,0,0,0,1,0,1,0] >;
C6×C3⋊D4 in GAP, Magma, Sage, TeX
C_6\times C_3\rtimes D_4
% in TeX
G:=Group("C6xC3:D4");
// GroupNames label
G:=SmallGroup(144,167);
// by ID
G=gap.SmallGroup(144,167);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-2,-3,506,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations