direct product, metabelian, supersoluble, monomial
Aliases: C6xC3:D4, C62:7C22, (C2xC6):9D6, C3:3(C6xD4), (C3xC6):6D4, C6:2(C3xD4), D6:3(C2xC6), C22:4(S3xC6), (C2xC62):2C2, C23:3(C3xS3), (C22xC6):4C6, (C22xC6):3S3, C32:12(C2xD4), (C22xS3):4C6, (S3xC6):9C22, (C2xDic3):4C6, Dic3:2(C2xC6), (C6xDic3):10C2, C6.10(C22xC6), (C3xC6).28C23, C6.49(C22xS3), (C3xDic3):9C22, (S3xC2xC6):6C2, (C2xC6):5(C2xC6), C2.10(S3xC2xC6), SmallGroup(144,167)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C6xC3:D4
G = < a,b,c,d | a6=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 248 in 124 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2xC4, D4, C23, C23, C32, Dic3, C12, D6, D6, C2xC6, C2xC6, C2xC6, C2xD4, C3xS3, C3xC6, C3xC6, C3xC6, C2xDic3, C3:D4, C2xC12, C3xD4, C22xS3, C22xC6, C22xC6, C3xDic3, S3xC6, S3xC6, C62, C62, C62, C2xC3:D4, C6xD4, C6xDic3, C3xC3:D4, S3xC2xC6, C2xC62, C6xC3:D4
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2xC6, C2xD4, C3xS3, C3:D4, C3xD4, C22xS3, C22xC6, S3xC6, C2xC3:D4, C6xD4, C3xC3:D4, S3xC2xC6, C6xC3:D4
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 23 21)(20 24 22)
(1 20 15 11)(2 21 16 12)(3 22 17 7)(4 23 18 8)(5 24 13 9)(6 19 14 10)
(1 11)(2 12)(3 7)(4 8)(5 9)(6 10)(13 24)(14 19)(15 20)(16 21)(17 22)(18 23)
G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,23,21)(20,24,22), (1,20,15,11)(2,21,16,12)(3,22,17,7)(4,23,18,8)(5,24,13,9)(6,19,14,10), (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,23,21)(20,24,22), (1,20,15,11)(2,21,16,12)(3,22,17,7)(4,23,18,8)(5,24,13,9)(6,19,14,10), (1,11)(2,12)(3,7)(4,8)(5,9)(6,10)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,23,21),(20,24,22)], [(1,20,15,11),(2,21,16,12),(3,22,17,7),(4,23,18,8),(5,24,13,9),(6,19,14,10)], [(1,11),(2,12),(3,7),(4,8),(5,9),(6,10),(13,24),(14,19),(15,20),(16,21),(17,22),(18,23)]])
G:=TransitiveGroup(24,248);
C6xC3:D4 is a maximal subgroup of
C62.31D4 C62.100C23 C62.101C23 C62.56D4 C62.57D4 C62.111C23 C62.112C23 C62.113C23 C62.115C23 C62:4D4 C62:6D4 C62.121C23 C62:7D4 C62:8D4 C62.125C23 C32:2+ 1+4 S3xC6xD4
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 6A | ··· | 6F | 6G | ··· | 6AE | 6AF | 6AG | 6AH | 6AI | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 6 | 6 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 1 | ··· | 1 | 2 | ··· | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | S3 | D4 | D6 | C3xS3 | C3:D4 | C3xD4 | S3xC6 | C3xC3:D4 |
kernel | C6xC3:D4 | C6xDic3 | C3xC3:D4 | S3xC2xC6 | C2xC62 | C2xC3:D4 | C2xDic3 | C3:D4 | C22xS3 | C22xC6 | C22xC6 | C3xC6 | C2xC6 | C23 | C6 | C6 | C22 | C2 |
# reps | 1 | 1 | 4 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 1 | 2 | 3 | 2 | 4 | 4 | 6 | 8 |
Matrix representation of C6xC3:D4 ►in GL3(F13) generated by
4 | 0 | 0 |
0 | 10 | 0 |
0 | 0 | 10 |
1 | 0 | 0 |
0 | 3 | 0 |
0 | 0 | 9 |
1 | 0 | 0 |
0 | 0 | 1 |
0 | 12 | 0 |
1 | 0 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
G:=sub<GL(3,GF(13))| [4,0,0,0,10,0,0,0,10],[1,0,0,0,3,0,0,0,9],[1,0,0,0,0,12,0,1,0],[1,0,0,0,0,1,0,1,0] >;
C6xC3:D4 in GAP, Magma, Sage, TeX
C_6\times C_3\rtimes D_4
% in TeX
G:=Group("C6xC3:D4");
// GroupNames label
G:=SmallGroup(144,167);
// by ID
G=gap.SmallGroup(144,167);
# by ID
G:=PCGroup([6,-2,-2,-2,-3,-2,-3,506,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations