Copied to
clipboard

G = C3xD6:C4order 144 = 24·32

Direct product of C3 and D6:C4

direct product, metabelian, supersoluble, monomial

Aliases: C3xD6:C4, D6:C12, C6.23D12, C62.19C22, (S3xC6):2C4, (C6xC12):1C2, (C2xC12):1C6, (C2xC12):1S3, C6.6(C3xD4), C2.5(S3xC12), C6.25(C4xS3), C6.4(C2xC12), C2.2(C3xD12), (C3xC6).21D4, (C2xC6).44D6, (C22xS3).C6, (C2xDic3):1C6, (C6xDic3):3C2, C22.6(S3xC6), C6.28(C3:D4), C32:5(C22:C4), (C2xC4):1(C3xS3), (S3xC2xC6).2C2, C3:1(C3xC22:C4), (C2xC6).9(C2xC6), C2.2(C3xC3:D4), (C3xC6).21(C2xC4), SmallGroup(144,79)

Series: Derived Chief Lower central Upper central

C1C6 — C3xD6:C4
C1C3C6C2xC6C62S3xC2xC6 — C3xD6:C4
C3C6 — C3xD6:C4
C1C2xC6C2xC12

Generators and relations for C3xD6:C4
 G = < a,b,c,d | a3=b6=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b3c >

Subgroups: 168 in 76 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, C23, C32, Dic3, C12, D6, D6, C2xC6, C2xC6, C22:C4, C3xS3, C3xC6, C2xDic3, C2xC12, C2xC12, C22xS3, C22xC6, C3xDic3, C3xC12, S3xC6, S3xC6, C62, D6:C4, C3xC22:C4, C6xDic3, C6xC12, S3xC2xC6, C3xD6:C4
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, D4, C12, D6, C2xC6, C22:C4, C3xS3, C4xS3, D12, C3:D4, C2xC12, C3xD4, S3xC6, D6:C4, C3xC22:C4, S3xC12, C3xD12, C3xC3:D4, C3xD6:C4

Smallest permutation representation of C3xD6:C4
On 48 points
Generators in S48
(1 3 5)(2 4 6)(7 9 11)(8 10 12)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 29 27)(26 30 28)(31 35 33)(32 36 34)(37 41 39)(38 42 40)(43 47 45)(44 48 46)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 34)(8 33)(9 32)(10 31)(11 36)(12 35)(13 40)(14 39)(15 38)(16 37)(17 42)(18 41)(19 46)(20 45)(21 44)(22 43)(23 48)(24 47)
(1 23 11 17)(2 24 12 18)(3 19 7 13)(4 20 8 14)(5 21 9 15)(6 22 10 16)(25 46 31 40)(26 47 32 41)(27 48 33 42)(28 43 34 37)(29 44 35 38)(30 45 36 39)

G:=sub<Sym(48)| (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,34)(8,33)(9,32)(10,31)(11,36)(12,35)(13,40)(14,39)(15,38)(16,37)(17,42)(18,41)(19,46)(20,45)(21,44)(22,43)(23,48)(24,47), (1,23,11,17)(2,24,12,18)(3,19,7,13)(4,20,8,14)(5,21,9,15)(6,22,10,16)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,43,34,37)(29,44,35,38)(30,45,36,39)>;

G:=Group( (1,3,5)(2,4,6)(7,9,11)(8,10,12)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,29,27)(26,30,28)(31,35,33)(32,36,34)(37,41,39)(38,42,40)(43,47,45)(44,48,46), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,34)(8,33)(9,32)(10,31)(11,36)(12,35)(13,40)(14,39)(15,38)(16,37)(17,42)(18,41)(19,46)(20,45)(21,44)(22,43)(23,48)(24,47), (1,23,11,17)(2,24,12,18)(3,19,7,13)(4,20,8,14)(5,21,9,15)(6,22,10,16)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,43,34,37)(29,44,35,38)(30,45,36,39) );

G=PermutationGroup([[(1,3,5),(2,4,6),(7,9,11),(8,10,12),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,29,27),(26,30,28),(31,35,33),(32,36,34),(37,41,39),(38,42,40),(43,47,45),(44,48,46)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,34),(8,33),(9,32),(10,31),(11,36),(12,35),(13,40),(14,39),(15,38),(16,37),(17,42),(18,41),(19,46),(20,45),(21,44),(22,43),(23,48),(24,47)], [(1,23,11,17),(2,24,12,18),(3,19,7,13),(4,20,8,14),(5,21,9,15),(6,22,10,16),(25,46,31,40),(26,47,32,41),(27,48,33,42),(28,43,34,37),(29,44,35,38),(30,45,36,39)]])

C3xD6:C4 is a maximal subgroup of
Dic3.D12  C62.23C23  C62.24C23  C62.28C23  C62.29C23  C62.31C23  C62.32C23  C62.47C23  C62.48C23  C62.49C23  Dic3:4D12  C62.51C23  C62.55C23  D6:1Dic6  D6.D12  D6.9D12  D6:2Dic6  D6:3Dic6  D6:4Dic6  C62.72C23  C62.75C23  D6:D12  C62.77C23  Dic3:3D12  C62.82C23  C62.83C23  C62.85C23  C62.91C23  D6:4D12  D6:5D12  C12xD12  C3xS3xC22:C4  C12xC3:D4  C62.21D6  D18:C12  C62.31D6
C3xD6:C4 is a maximal quotient of
C62.21D6  D18:C12

54 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E4A4B4C4D6A···6F6G···6O6P6Q6R6S12A···12P12Q12R12S12T
order1222223333344446···66···6666612···1212121212
size1111661122222661···12···266662···26666

54 irreducible representations

dim1111111111222222222222
type++++++++
imageC1C2C2C2C3C4C6C6C6C12S3D4D6C3xS3C4xS3D12C3:D4C3xD4S3xC6S3xC12C3xD12C3xC3:D4
kernelC3xD6:C4C6xDic3C6xC12S3xC2xC6D6:C4S3xC6C2xDic3C2xC12C22xS3D6C2xC12C3xC6C2xC6C2xC4C6C6C6C6C22C2C2C2
# reps1111242228121222242444

Matrix representation of C3xD6:C4 in GL3(F13) generated by

900
030
003
,
100
040
0010
,
1200
0010
040
,
500
010
0012
G:=sub<GL(3,GF(13))| [9,0,0,0,3,0,0,0,3],[1,0,0,0,4,0,0,0,10],[12,0,0,0,0,4,0,10,0],[5,0,0,0,1,0,0,0,12] >;

C3xD6:C4 in GAP, Magma, Sage, TeX

C_3\times D_6\rtimes C_4
% in TeX

G:=Group("C3xD6:C4");
// GroupNames label

G:=SmallGroup(144,79);
// by ID

G=gap.SmallGroup(144,79);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-3,313,79,3461]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^6=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^3*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<