# Extensions 1→N→G→Q→1 with N=C22×D5 and Q=C4

Direct product G=N×Q with N=C22×D5 and Q=C4
dρLabelID
D5×C22×C480D5xC2^2xC4160,214

Semidirect products G=N:Q with N=C22×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22×D5)⋊1C4 = C23.1D10φ: C4/C1C4 ⊆ Out C22×D5404(C2^2xD5):1C4160,13
(C22×D5)⋊2C4 = D10.D4φ: C4/C1C4 ⊆ Out C22×D5404+(C2^2xD5):2C4160,74
(C22×D5)⋊3C4 = D5×C22⋊C4φ: C4/C2C2 ⊆ Out C22×D540(C2^2xD5):3C4160,101
(C22×D5)⋊4C4 = C2×D10⋊C4φ: C4/C2C2 ⊆ Out C22×D580(C2^2xD5):4C4160,148
(C22×D5)⋊5C4 = C2×C22⋊F5φ: C4/C2C2 ⊆ Out C22×D540(C2^2xD5):5C4160,212
(C22×D5)⋊6C4 = C23×F5φ: C4/C2C2 ⊆ Out C22×D540(C2^2xD5):6C4160,236

Non-split extensions G=N.Q with N=C22×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C22×D5).1C4 = C20.46D4φ: C4/C1C4 ⊆ Out C22×D5404+(C2^2xD5).1C4160,30
(C22×D5).2C4 = C23.F5φ: C4/C1C4 ⊆ Out C22×D5404(C2^2xD5).2C4160,88
(C22×D5).3C4 = D101C8φ: C4/C2C2 ⊆ Out C22×D580(C2^2xD5).3C4160,27
(C22×D5).4C4 = C2×C8⋊D5φ: C4/C2C2 ⊆ Out C22×D580(C2^2xD5).4C4160,121
(C22×D5).5C4 = D5×M4(2)φ: C4/C2C2 ⊆ Out C22×D5404(C2^2xD5).5C4160,127
(C22×D5).6C4 = D10⋊C8φ: C4/C2C2 ⊆ Out C22×D580(C2^2xD5).6C4160,78
(C22×D5).7C4 = C2×D5⋊C8φ: C4/C2C2 ⊆ Out C22×D580(C2^2xD5).7C4160,200
(C22×D5).8C4 = C2×C4.F5φ: C4/C2C2 ⊆ Out C22×D580(C2^2xD5).8C4160,201
(C22×D5).9C4 = D5⋊M4(2)φ: C4/C2C2 ⊆ Out C22×D5404(C2^2xD5).9C4160,202
(C22×D5).10C4 = D5×C2×C8φ: trivial image80(C2^2xD5).10C4160,120

׿
×
𝔽