metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D5⋊M4(2), Dic5.11C23, D5⋊C8⋊4C2, C5⋊C8⋊2C22, C4.F5⋊5C2, (C2×C4).8F5, (C2×C20).8C4, (C4×D5).8C4, C5⋊2(C2×M4(2)), C4.21(C2×F5), C20.20(C2×C4), C22.F5⋊3C2, C22.6(C2×F5), C2.5(C22×F5), D10.14(C2×C4), C10.3(C22×C4), (C22×D5).9C4, Dic5.16(C2×C4), (C4×D5).34C22, (C2×Dic5).56C22, (C2×C4×D5).15C2, (C2×C10).15(C2×C4), SmallGroup(160,202)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C10 — Dic5 — C5⋊C8 — D5⋊C8 — D5⋊M4(2) |
Generators and relations for D5⋊M4(2)
G = < a,b,c,d | a5=b2=c8=d2=1, bab=a-1, cac-1=a3, ad=da, cbc-1=a2b, bd=db, dcd=c5 >
Subgroups: 196 in 68 conjugacy classes, 36 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C2×C8, M4(2), C22×C4, Dic5, C20, D10, D10, C2×C10, C2×M4(2), C5⋊C8, C4×D5, C2×Dic5, C2×C20, C22×D5, D5⋊C8, C4.F5, C22.F5, C2×C4×D5, D5⋊M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, F5, C2×M4(2), C2×F5, C22×F5, D5⋊M4(2)
Character table of D5⋊M4(2)
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 5 | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 10A | 10B | 10C | 20A | 20B | 20C | 20D | |
size | 1 | 1 | 2 | 5 | 5 | 10 | 1 | 1 | 2 | 5 | 5 | 10 | 4 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | i | i | -i | -i | i | i | -i | -i | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -i | -i | i | i | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | i | i | -i | i | -i | -i | i | -i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ12 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -i | -i | i | -i | i | i | -i | i | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ13 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | -i | i | -i | i | i | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | i | -i | i | i | -i | i | -i | -i | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ15 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | -i | i | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ16 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | i | -i | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ17 | 2 | -2 | 0 | -2 | 2 | 0 | 2i | -2i | 0 | -2i | 2i | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2i | -2i | 0 | 0 | complex lifted from M4(2) |
ρ18 | 2 | -2 | 0 | 2 | -2 | 0 | -2i | 2i | 0 | -2i | 2i | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2i | 2i | 0 | 0 | complex lifted from M4(2) |
ρ19 | 2 | -2 | 0 | -2 | 2 | 0 | -2i | 2i | 0 | 2i | -2i | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2i | 2i | 0 | 0 | complex lifted from M4(2) |
ρ20 | 2 | -2 | 0 | 2 | -2 | 0 | 2i | -2i | 0 | 2i | -2i | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2i | -2i | 0 | 0 | complex lifted from M4(2) |
ρ21 | 4 | 4 | -4 | 0 | 0 | 0 | 4 | 4 | -4 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ22 | 4 | 4 | 4 | 0 | 0 | 0 | -4 | -4 | -4 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from C2×F5 |
ρ23 | 4 | 4 | -4 | 0 | 0 | 0 | -4 | -4 | 4 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from C2×F5 |
ρ24 | 4 | 4 | 4 | 0 | 0 | 0 | 4 | 4 | 4 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√5 | √5 | 1 | i | -i | -√-5 | √-5 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | -4i | 4i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √5 | -√5 | 1 | i | -i | √-5 | -√-5 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√5 | √5 | 1 | -i | i | √-5 | -√-5 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 4i | -4i | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √5 | -√5 | 1 | -i | i | -√-5 | √-5 | complex faithful |
(1 26 37 19 10)(2 20 27 11 38)(3 12 21 39 28)(4 40 13 29 22)(5 30 33 23 14)(6 24 31 15 34)(7 16 17 35 32)(8 36 9 25 18)
(1 10)(2 38)(3 28)(4 22)(5 14)(6 34)(7 32)(8 18)(11 20)(12 39)(15 24)(16 35)(19 26)(23 30)(25 36)(29 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(25 29)(27 31)(34 38)(36 40)
G:=sub<Sym(40)| (1,26,37,19,10)(2,20,27,11,38)(3,12,21,39,28)(4,40,13,29,22)(5,30,33,23,14)(6,24,31,15,34)(7,16,17,35,32)(8,36,9,25,18), (1,10)(2,38)(3,28)(4,22)(5,14)(6,34)(7,32)(8,18)(11,20)(12,39)(15,24)(16,35)(19,26)(23,30)(25,36)(29,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31)(34,38)(36,40)>;
G:=Group( (1,26,37,19,10)(2,20,27,11,38)(3,12,21,39,28)(4,40,13,29,22)(5,30,33,23,14)(6,24,31,15,34)(7,16,17,35,32)(8,36,9,25,18), (1,10)(2,38)(3,28)(4,22)(5,14)(6,34)(7,32)(8,18)(11,20)(12,39)(15,24)(16,35)(19,26)(23,30)(25,36)(29,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31)(34,38)(36,40) );
G=PermutationGroup([[(1,26,37,19,10),(2,20,27,11,38),(3,12,21,39,28),(4,40,13,29,22),(5,30,33,23,14),(6,24,31,15,34),(7,16,17,35,32),(8,36,9,25,18)], [(1,10),(2,38),(3,28),(4,22),(5,14),(6,34),(7,32),(8,18),(11,20),(12,39),(15,24),(16,35),(19,26),(23,30),(25,36),(29,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(25,29),(27,31),(34,38),(36,40)]])
D5⋊M4(2) is a maximal subgroup of
C42⋊6F5 C42⋊3F5 (C2×C8)⋊F5 C20.25C42 M4(2)⋊F5 M4(2).F5 C20.12C42 (C8×D5).C4 M4(2)×F5 M4(2).1F5 (C4×D5).D4 (D4×C10)⋊C4 (C2×D4)⋊6F5 D5⋊(C4.D4) (C2×Q8)⋊4F5 (C2×Q8)⋊6F5 (C2×Q8).7F5 D5⋊C4≀C2 C4○D4⋊F5 Dic5.C24 Dic5.20C24 Dic5.21C24 Dic5.22C24 D15⋊M4(2) C5⋊C8⋊D6 D15⋊2M4(2) C60.59(C2×C4)
D5⋊M4(2) is a maximal quotient of
C42.5F5 C4×C4.F5 C42.6F5 C42.11F5 C42.14F5 C42.15F5 C42.7F5 D10⋊M4(2) Dic5⋊M4(2) D10⋊2M4(2) Dic5.M4(2) Dic5.12M4(2) C4×C22.F5 D10.11M4(2) D10⋊9M4(2) D10⋊10M4(2) Dic5.13M4(2) C20⋊8M4(2) D15⋊M4(2) C5⋊C8⋊D6 D15⋊2M4(2) C60.59(C2×C4)
Matrix representation of D5⋊M4(2) ►in GL4(𝔽41) generated by
0 | 1 | 0 | 0 |
40 | 6 | 0 | 0 |
0 | 0 | 40 | 6 |
0 | 0 | 35 | 35 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 40 | 6 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
32 | 0 | 0 | 0 |
28 | 9 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
G:=sub<GL(4,GF(41))| [0,40,0,0,1,6,0,0,0,0,40,35,0,0,6,35],[0,1,0,0,1,0,0,0,0,0,40,0,0,0,6,1],[0,0,32,28,0,0,0,9,1,0,0,0,0,1,0,0],[1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40] >;
D5⋊M4(2) in GAP, Magma, Sage, TeX
D_5\rtimes M_4(2)
% in TeX
G:=Group("D5:M4(2)");
// GroupNames label
G:=SmallGroup(160,202);
// by ID
G=gap.SmallGroup(160,202);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,48,103,362,69,2309,599]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^8=d^2=1,b*a*b=a^-1,c*a*c^-1=a^3,a*d=d*a,c*b*c^-1=a^2*b,b*d=d*b,d*c*d=c^5>;
// generators/relations
Export