Copied to
clipboard

G = D5×M4(2)  order 160 = 25·5

Direct product of D5 and M4(2)

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×M4(2), C86D10, C406C22, C20.38C23, (C8×D5)⋊7C2, C8⋊D55C2, (C4×D5).1C4, C4.15(C4×D5), C55(C2×M4(2)), C20.33(C2×C4), (C2×C4).45D10, C4.Dic55C2, C22.7(C4×D5), C52C811C22, D10.11(C2×C4), (C5×M4(2))⋊3C2, (C2×Dic5).7C4, (C22×D5).5C4, C4.38(C22×D5), C10.28(C22×C4), (C2×C20).25C22, Dic5.13(C2×C4), (C4×D5).38C22, (C2×C4×D5).4C2, C2.16(C2×C4×D5), (C2×C10).25(C2×C4), SmallGroup(160,127)

Series: Derived Chief Lower central Upper central

C1C10 — D5×M4(2)
C1C5C10C20C4×D5C2×C4×D5 — D5×M4(2)
C5C10 — D5×M4(2)
C1C4M4(2)

Generators and relations for D5×M4(2)
 G = < a,b,c,d | a5=b2=c8=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c5 >

Subgroups: 184 in 68 conjugacy classes, 39 normal (27 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C2×C8, M4(2), M4(2), C22×C4, Dic5, C20, D10, D10, C2×C10, C2×M4(2), C52C8, C40, C4×D5, C2×Dic5, C2×C20, C22×D5, C8×D5, C8⋊D5, C4.Dic5, C5×M4(2), C2×C4×D5, D5×M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, M4(2), C22×C4, D10, C2×M4(2), C4×D5, C22×D5, C2×C4×D5, D5×M4(2)

Smallest permutation representation of D5×M4(2)
On 40 points
Generators in S40
(1 26 37 18 10)(2 27 38 19 11)(3 28 39 20 12)(4 29 40 21 13)(5 30 33 22 14)(6 31 34 23 15)(7 32 35 24 16)(8 25 36 17 9)
(1 14)(2 15)(3 16)(4 9)(5 10)(6 11)(7 12)(8 13)(17 29)(18 30)(19 31)(20 32)(21 25)(22 26)(23 27)(24 28)(33 37)(34 38)(35 39)(36 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)(25 29)(27 31)(34 38)(36 40)

G:=sub<Sym(40)| (1,26,37,18,10)(2,27,38,19,11)(3,28,39,20,12)(4,29,40,21,13)(5,30,33,22,14)(6,31,34,23,15)(7,32,35,24,16)(8,25,36,17,9), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,37)(34,38)(35,39)(36,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40)>;

G:=Group( (1,26,37,18,10)(2,27,38,19,11)(3,28,39,20,12)(4,29,40,21,13)(5,30,33,22,14)(6,31,34,23,15)(7,32,35,24,16)(8,25,36,17,9), (1,14)(2,15)(3,16)(4,9)(5,10)(6,11)(7,12)(8,13)(17,29)(18,30)(19,31)(20,32)(21,25)(22,26)(23,27)(24,28)(33,37)(34,38)(35,39)(36,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(34,38)(36,40) );

G=PermutationGroup([[(1,26,37,18,10),(2,27,38,19,11),(3,28,39,20,12),(4,29,40,21,13),(5,30,33,22,14),(6,31,34,23,15),(7,32,35,24,16),(8,25,36,17,9)], [(1,14),(2,15),(3,16),(4,9),(5,10),(6,11),(7,12),(8,13),(17,29),(18,30),(19,31),(20,32),(21,25),(22,26),(23,27),(24,28),(33,37),(34,38),(35,39),(36,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23),(25,29),(27,31),(34,38),(36,40)]])

D5×M4(2) is a maximal subgroup of
M4(2)⋊F5  M4(2)⋊3F5  M4(2).F5  M4(2)⋊4F5  M4(2).19D10  M4(2).21D10  C42⋊D10  M4(2).25D10  M4(2)⋊1F5  M4(2)⋊5F5  M4(2).1F5  C40.47C23  C20.72C24  SD16⋊D10  D40⋊C22  C40⋊D6  D154M4(2)
D5×M4(2) is a maximal quotient of
C40⋊Q8  C42.182D10  C89D20  D10.6C42  Dic5.14M4(2)  Dic5.9M4(2)  D107M4(2)  D104M4(2)  Dic52M4(2)  Dic5.5M4(2)  C42.200D10  C42.202D10  D105M4(2)  C205M4(2)  Dic55M4(2)  D108M4(2)  C40⋊D4  C4018D4  C40⋊D6  D154M4(2)

40 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F5A5B8A8B8C8D8E8F8G8H10A10B10C10D20A20B20C20D20E20F40A···40H
order12222244444455888888881010101020202020202040···40
size112551011255102222221010101022442222444···4

40 irreducible representations

dim1111111112222224
type+++++++++
imageC1C2C2C2C2C2C4C4C4D5M4(2)D10D10C4×D5C4×D5D5×M4(2)
kernelD5×M4(2)C8×D5C8⋊D5C4.Dic5C5×M4(2)C2×C4×D5C4×D5C2×Dic5C22×D5M4(2)D5C8C2×C4C4C22C1
# reps1221114222442444

Matrix representation of D5×M4(2) in GL4(𝔽41) generated by

1000
0100
00401
00337
,
40000
04000
00400
00331
,
0100
9000
00400
00040
,
1000
04000
0010
0001
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,40,33,0,0,1,7],[40,0,0,0,0,40,0,0,0,0,40,33,0,0,0,1],[0,9,0,0,1,0,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1] >;

D5×M4(2) in GAP, Magma, Sage, TeX

D_5\times M_4(2)
% in TeX

G:=Group("D5xM4(2)");
// GroupNames label

G:=SmallGroup(160,127);
// by ID

G=gap.SmallGroup(160,127);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,188,50,69,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^8=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^5>;
// generators/relations

׿
×
𝔽