Extensions 1→N→G→Q→1 with N=C2xC5:D4 and Q=C2

Direct product G=NxQ with N=C2xC5:D4 and Q=C2
dρLabelID
C22xC5:D480C2^2xC5:D4160,227

Semidirect products G=N:Q with N=C2xC5:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC5:D4):1C2 = C22:D20φ: C2/C1C2 ⊆ Out C2xC5:D440(C2xC5:D4):1C2160,103
(C2xC5:D4):2C2 = D10:D4φ: C2/C1C2 ⊆ Out C2xC5:D480(C2xC5:D4):2C2160,105
(C2xC5:D4):3C2 = C20:7D4φ: C2/C1C2 ⊆ Out C2xC5:D480(C2xC5:D4):3C2160,151
(C2xC5:D4):4C2 = C23:D10φ: C2/C1C2 ⊆ Out C2xC5:D440(C2xC5:D4):4C2160,158
(C2xC5:D4):5C2 = C20:2D4φ: C2/C1C2 ⊆ Out C2xC5:D480(C2xC5:D4):5C2160,159
(C2xC5:D4):6C2 = Dic5:D4φ: C2/C1C2 ⊆ Out C2xC5:D480(C2xC5:D4):6C2160,160
(C2xC5:D4):7C2 = C20:D4φ: C2/C1C2 ⊆ Out C2xC5:D480(C2xC5:D4):7C2160,161
(C2xC5:D4):8C2 = C24:2D5φ: C2/C1C2 ⊆ Out C2xC5:D440(C2xC5:D4):8C2160,174
(C2xC5:D4):9C2 = C2xD4xD5φ: C2/C1C2 ⊆ Out C2xC5:D440(C2xC5:D4):9C2160,217
(C2xC5:D4):10C2 = C2xD4:2D5φ: C2/C1C2 ⊆ Out C2xC5:D480(C2xC5:D4):10C2160,218
(C2xC5:D4):11C2 = D4:6D10φ: C2/C1C2 ⊆ Out C2xC5:D4404(C2xC5:D4):11C2160,219
(C2xC5:D4):12C2 = C2xC4oD20φ: trivial image80(C2xC5:D4):12C2160,216

Non-split extensions G=N.Q with N=C2xC5:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC5:D4).1C2 = C23.1D10φ: C2/C1C2 ⊆ Out C2xC5:D4404(C2xC5:D4).1C2160,13
(C2xC5:D4).2C2 = Dic5:4D4φ: C2/C1C2 ⊆ Out C2xC5:D480(C2xC5:D4).2C2160,102
(C2xC5:D4).3C2 = D10.12D4φ: C2/C1C2 ⊆ Out C2xC5:D480(C2xC5:D4).3C2160,104
(C2xC5:D4).4C2 = Dic5.5D4φ: C2/C1C2 ⊆ Out C2xC5:D480(C2xC5:D4).4C2160,106
(C2xC5:D4).5C2 = C22.D20φ: C2/C1C2 ⊆ Out C2xC5:D480(C2xC5:D4).5C2160,107
(C2xC5:D4).6C2 = C23.23D10φ: C2/C1C2 ⊆ Out C2xC5:D480(C2xC5:D4).6C2160,150
(C2xC5:D4).7C2 = C23:F5φ: C2/C1C2 ⊆ Out C2xC5:D4404(C2xC5:D4).7C2160,86
(C2xC5:D4).8C2 = C23.F5φ: C2/C1C2 ⊆ Out C2xC5:D4404(C2xC5:D4).8C2160,88
(C2xC5:D4).9C2 = C4xC5:D4φ: trivial image80(C2xC5:D4).9C2160,149

׿
x
:
Z
F
o
wr
Q
<