metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊6D10, C23⋊2D10, D20⋊8C22, C10.7C24, C5⋊12+ 1+4, C20.21C23, D10.3C23, Dic10⋊8C22, Dic5.4C23, (D4×D5)⋊4C2, (C2×D4)⋊7D5, (C2×C4)⋊3D10, C4○D20⋊5C2, (D4×C10)⋊7C2, D4⋊2D5⋊4C2, (C2×C20)⋊3C22, (C5×D4)⋊7C22, (C4×D5)⋊1C22, C5⋊D4⋊3C22, C2.8(C23×D5), (C2×C10).2C23, C4.21(C22×D5), (C22×C10)⋊5C22, (C2×Dic5)⋊4C22, (C22×D5)⋊3C22, C22.6(C22×D5), (C2×C5⋊D4)⋊11C2, SmallGroup(160,219)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊6D10
G = < a,b,c,d | a4=b2=c10=d2=1, bab=cac-1=a-1, ad=da, cbc-1=dbd=a2b, dcd=c-1 >
Subgroups: 520 in 166 conjugacy classes, 85 normal (11 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, D4, Q8, C23, C23, D5, C10, C10, C2×D4, C2×D4, C4○D4, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, 2+ 1+4, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, C4○D20, D4×D5, D4⋊2D5, C2×C5⋊D4, D4×C10, D4⋊6D10
Quotients: C1, C2, C22, C23, D5, C24, D10, 2+ 1+4, C22×D5, C23×D5, D4⋊6D10
(1 37 10 32)(2 33 6 38)(3 39 7 34)(4 35 8 40)(5 31 9 36)(11 24 16 29)(12 30 17 25)(13 26 18 21)(14 22 19 27)(15 28 20 23)
(1 23)(2 29)(3 25)(4 21)(5 27)(6 24)(7 30)(8 26)(9 22)(10 28)(11 38)(12 34)(13 40)(14 36)(15 32)(16 33)(17 39)(18 35)(19 31)(20 37)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(2 5)(3 4)(6 9)(7 8)(11 19)(12 18)(13 17)(14 16)(15 20)(21 30)(22 29)(23 28)(24 27)(25 26)(31 33)(34 40)(35 39)(36 38)
G:=sub<Sym(40)| (1,37,10,32)(2,33,6,38)(3,39,7,34)(4,35,8,40)(5,31,9,36)(11,24,16,29)(12,30,17,25)(13,26,18,21)(14,22,19,27)(15,28,20,23), (1,23)(2,29)(3,25)(4,21)(5,27)(6,24)(7,30)(8,26)(9,22)(10,28)(11,38)(12,34)(13,40)(14,36)(15,32)(16,33)(17,39)(18,35)(19,31)(20,37), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (2,5)(3,4)(6,9)(7,8)(11,19)(12,18)(13,17)(14,16)(15,20)(21,30)(22,29)(23,28)(24,27)(25,26)(31,33)(34,40)(35,39)(36,38)>;
G:=Group( (1,37,10,32)(2,33,6,38)(3,39,7,34)(4,35,8,40)(5,31,9,36)(11,24,16,29)(12,30,17,25)(13,26,18,21)(14,22,19,27)(15,28,20,23), (1,23)(2,29)(3,25)(4,21)(5,27)(6,24)(7,30)(8,26)(9,22)(10,28)(11,38)(12,34)(13,40)(14,36)(15,32)(16,33)(17,39)(18,35)(19,31)(20,37), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (2,5)(3,4)(6,9)(7,8)(11,19)(12,18)(13,17)(14,16)(15,20)(21,30)(22,29)(23,28)(24,27)(25,26)(31,33)(34,40)(35,39)(36,38) );
G=PermutationGroup([[(1,37,10,32),(2,33,6,38),(3,39,7,34),(4,35,8,40),(5,31,9,36),(11,24,16,29),(12,30,17,25),(13,26,18,21),(14,22,19,27),(15,28,20,23)], [(1,23),(2,29),(3,25),(4,21),(5,27),(6,24),(7,30),(8,26),(9,22),(10,28),(11,38),(12,34),(13,40),(14,36),(15,32),(16,33),(17,39),(18,35),(19,31),(20,37)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(2,5),(3,4),(6,9),(7,8),(11,19),(12,18),(13,17),(14,16),(15,20),(21,30),(22,29),(23,28),(24,27),(25,26),(31,33),(34,40),(35,39),(36,38)]])
D4⋊6D10 is a maximal subgroup of
C23⋊D20 C23.5D20 D20.1D4 D20⋊1D4 C24⋊2D10 C22⋊C4⋊D10 C42⋊5D10 D20⋊5D4 D8⋊13D10 D20.29D4 D8⋊5D10 D8⋊6D10 C10.C25 D5×2+ 1+4 D20.37C23 D20⋊26D6 D20⋊13D6 D12⋊14D10 C15⋊2+ 1+4 D4⋊6D30
D4⋊6D10 is a maximal quotient of
C23⋊2Dic10 C24.24D10 C24.27D10 C23⋊3D20 C24.30D10 C24.31D10 C10.12- 1+4 C10.82+ 1+4 C10.2+ 1+4 C10.102+ 1+4 C10.112+ 1+4 C10.62- 1+4 D4⋊5Dic10 C42.104D10 C42⋊11D10 C42.108D10 D4⋊5D20 C42⋊16D10 C42.113D10 C42.114D10 C42⋊17D10 C42.115D10 C42.116D10 C42.118D10 C24.32D10 C24⋊3D10 C24⋊4D10 C24.33D10 C24.34D10 C24.35D10 C24⋊5D10 C24.36D10 C10.682- 1+4 Dic10⋊20D4 C10.342+ 1+4 C10.352+ 1+4 C10.362+ 1+4 C10.372+ 1+4 C10.382+ 1+4 C10.392+ 1+4 C10.402+ 1+4 D20⋊20D4 C10.422+ 1+4 C10.432+ 1+4 C10.442+ 1+4 C10.452+ 1+4 C10.462+ 1+4 C10.472+ 1+4 C10.482+ 1+4 C10.742- 1+4 C10.502+ 1+4 C10.512+ 1+4 C10.522+ 1+4 C10.532+ 1+4 C10.202- 1+4 C10.222- 1+4 C10.562+ 1+4 C10.572+ 1+4 C10.582+ 1+4 C10.262- 1+4 C10.812- 1+4 C10.612+ 1+4 C10.622+ 1+4 C10.632+ 1+4 C10.642+ 1+4 C10.842- 1+4 C10.662+ 1+4 C10.672+ 1+4 C10.682+ 1+4 C10.692+ 1+4 C42.137D10 C42.138D10 C42.140D10 C42⋊20D10 C42⋊21D10 C42⋊22D10 C42.145D10 C42.166D10 C42⋊26D10 D20⋊11D4 Dic10⋊11D4 C42.168D10 C42⋊28D10 Dic10⋊9Q8 C42.174D10 D20⋊9Q8 C42.178D10 C42.179D10 C42.180D10 C24.38D10 D4×C5⋊D4 C24⋊8D10 C24.41D10 C24.42D10 D20⋊26D6 D20⋊13D6 D12⋊14D10 C15⋊2+ 1+4 D4⋊6D30
37 conjugacy classes
class | 1 | 2A | 2B | ··· | 2F | 2G | 2H | 2I | 2J | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 2 | ··· | 2 | 10 | 10 | 10 | 10 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
37 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | D5 | D10 | D10 | D10 | 2+ 1+4 | D4⋊6D10 |
kernel | D4⋊6D10 | C4○D20 | D4×D5 | D4⋊2D5 | C2×C5⋊D4 | D4×C10 | C2×D4 | C2×C4 | D4 | C23 | C5 | C1 |
# reps | 1 | 2 | 4 | 4 | 4 | 1 | 2 | 2 | 8 | 4 | 1 | 4 |
Matrix representation of D4⋊6D10 ►in GL4(𝔽41) generated by
40 | 40 | 39 | 25 |
17 | 17 | 0 | 25 |
0 | 40 | 18 | 1 |
17 | 35 | 3 | 7 |
0 | 0 | 34 | 1 |
1 | 1 | 39 | 40 |
0 | 0 | 40 | 0 |
1 | 0 | 34 | 0 |
40 | 7 | 0 | 0 |
34 | 7 | 0 | 0 |
28 | 35 | 35 | 34 |
25 | 33 | 6 | 0 |
40 | 0 | 0 | 0 |
34 | 1 | 0 | 0 |
22 | 23 | 6 | 40 |
31 | 38 | 35 | 35 |
G:=sub<GL(4,GF(41))| [40,17,0,17,40,17,40,35,39,0,18,3,25,25,1,7],[0,1,0,1,0,1,0,0,34,39,40,34,1,40,0,0],[40,34,28,25,7,7,35,33,0,0,35,6,0,0,34,0],[40,34,22,31,0,1,23,38,0,0,6,35,0,0,40,35] >;
D4⋊6D10 in GAP, Magma, Sage, TeX
D_4\rtimes_6D_{10}
% in TeX
G:=Group("D4:6D10");
// GroupNames label
G:=SmallGroup(160,219);
// by ID
G=gap.SmallGroup(160,219);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,188,579,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^10=d^2=1,b*a*b=c*a*c^-1=a^-1,a*d=d*a,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations