direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D4⋊2D5, D4⋊5D10, C10.6C24, C20.20C23, D10.2C23, C23.19D10, Dic10⋊7C22, Dic5.3C23, (C2×D4)⋊8D5, (D4×C10)⋊6C2, C10⋊2(C4○D4), (C2×C4).60D10, (C5×D4)⋊6C22, (C4×D5)⋊4C22, C5⋊D4⋊2C22, C2.7(C23×D5), (C2×C10).1C23, C4.20(C22×D5), (C2×Dic10)⋊12C2, (C2×C20).45C22, (C22×Dic5)⋊8C2, (C2×Dic5)⋊9C22, C22.1(C22×D5), (C22×C10).23C22, (C22×D5).32C22, (C2×C4×D5)⋊4C2, C5⋊2(C2×C4○D4), (C2×C5⋊D4)⋊10C2, SmallGroup(160,218)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D4⋊2D5
G = < a,b,c,d,e | a2=b4=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >
Subgroups: 424 in 164 conjugacy classes, 89 normal (15 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, D4, Q8, C23, C23, D5, C10, C10, C10, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C4○D4, Dic10, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, C2×Dic10, C2×C4×D5, D4⋊2D5, C22×Dic5, C2×C5⋊D4, D4×C10, C2×D4⋊2D5
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, C22×D5, D4⋊2D5, C23×D5, C2×D4⋊2D5
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 49)(10 50)(11 51)(12 52)(13 53)(14 54)(15 55)(16 56)(17 57)(18 58)(19 59)(20 60)(21 61)(22 62)(23 63)(24 64)(25 65)(26 66)(27 67)(28 68)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)
(1 26 6 21)(2 27 7 22)(3 28 8 23)(4 29 9 24)(5 30 10 25)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)(41 66 46 61)(42 67 47 62)(43 68 48 63)(44 69 49 64)(45 70 50 65)(51 76 56 71)(52 77 57 72)(53 78 58 73)(54 79 59 74)(55 80 60 75)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(41 71)(42 72)(43 73)(44 74)(45 75)(46 76)(47 77)(48 78)(49 79)(50 80)(51 61)(52 62)(53 63)(54 64)(55 65)(56 66)(57 67)(58 68)(59 69)(60 70)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 5)(2 4)(6 10)(7 9)(11 20)(12 19)(13 18)(14 17)(15 16)(21 25)(22 24)(26 30)(27 29)(31 40)(32 39)(33 38)(34 37)(35 36)(41 45)(42 44)(46 50)(47 49)(51 60)(52 59)(53 58)(54 57)(55 56)(61 65)(62 64)(66 70)(67 69)(71 80)(72 79)(73 78)(74 77)(75 76)
G:=sub<Sym(80)| (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,66,46,61)(42,67,47,62)(43,68,48,63)(44,69,49,64)(45,70,50,65)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,5)(2,4)(6,10)(7,9)(11,20)(12,19)(13,18)(14,17)(15,16)(21,25)(22,24)(26,30)(27,29)(31,40)(32,39)(33,38)(34,37)(35,36)(41,45)(42,44)(46,50)(47,49)(51,60)(52,59)(53,58)(54,57)(55,56)(61,65)(62,64)(66,70)(67,69)(71,80)(72,79)(73,78)(74,77)(75,76)>;
G:=Group( (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,49)(10,50)(11,51)(12,52)(13,53)(14,54)(15,55)(16,56)(17,57)(18,58)(19,59)(20,60)(21,61)(22,62)(23,63)(24,64)(25,65)(26,66)(27,67)(28,68)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,66,46,61)(42,67,47,62)(43,68,48,63)(44,69,49,64)(45,70,50,65)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(41,71)(42,72)(43,73)(44,74)(45,75)(46,76)(47,77)(48,78)(49,79)(50,80)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,5)(2,4)(6,10)(7,9)(11,20)(12,19)(13,18)(14,17)(15,16)(21,25)(22,24)(26,30)(27,29)(31,40)(32,39)(33,38)(34,37)(35,36)(41,45)(42,44)(46,50)(47,49)(51,60)(52,59)(53,58)(54,57)(55,56)(61,65)(62,64)(66,70)(67,69)(71,80)(72,79)(73,78)(74,77)(75,76) );
G=PermutationGroup([[(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,49),(10,50),(11,51),(12,52),(13,53),(14,54),(15,55),(16,56),(17,57),(18,58),(19,59),(20,60),(21,61),(22,62),(23,63),(24,64),(25,65),(26,66),(27,67),(28,68),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80)], [(1,26,6,21),(2,27,7,22),(3,28,8,23),(4,29,9,24),(5,30,10,25),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35),(41,66,46,61),(42,67,47,62),(43,68,48,63),(44,69,49,64),(45,70,50,65),(51,76,56,71),(52,77,57,72),(53,78,58,73),(54,79,59,74),(55,80,60,75)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(41,71),(42,72),(43,73),(44,74),(45,75),(46,76),(47,77),(48,78),(49,79),(50,80),(51,61),(52,62),(53,63),(54,64),(55,65),(56,66),(57,67),(58,68),(59,69),(60,70)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,5),(2,4),(6,10),(7,9),(11,20),(12,19),(13,18),(14,17),(15,16),(21,25),(22,24),(26,30),(27,29),(31,40),(32,39),(33,38),(34,37),(35,36),(41,45),(42,44),(46,50),(47,49),(51,60),(52,59),(53,58),(54,57),(55,56),(61,65),(62,64),(66,70),(67,69),(71,80),(72,79),(73,78),(74,77),(75,76)]])
C2×D4⋊2D5 is a maximal subgroup of
C23⋊C4⋊5D5 M4(2).19D10 D4⋊(C4×D5) D4⋊2D5⋊C4 D4⋊3D20 D4.D20 Dic10⋊D4 Dic10.16D4 (C2×D4)⋊6F5 (C2×D4)⋊8F5 (C2×D4).7F5 (C2×D4).8F5 (C2×D4).9F5 C42.108D10 D4⋊5D20 D4⋊6D20 C24.56D10 C24.33D10 C24.34D10 C20⋊(C4○D4) C10.682- 1+4 Dic10⋊19D4 Dic10⋊20D4 C4⋊C4⋊21D10 C10.392+ 1+4 C10.402+ 1+4 C10.732- 1+4 C10.792- 1+4 C10.822- 1+4 C4⋊C4⋊28D10 C42.233D10 C42.141D10 Dic10⋊10D4 C42⋊26D10 C42.238D10 Dic10⋊11D4 SD16⋊D10 C24.42D10 C10.1042- 1+4 Dic5.C24 C2×D5×C4○D4 D20.37C23
C2×D4⋊2D5 is a maximal quotient of
C24.31D10 C10.52- 1+4 C42.102D10 C42.105D10 C42.106D10 D4⋊6Dic10 D4⋊6D20 C42.229D10 C42.117D10 C42.119D10 C24.56D10 C24.32D10 C24.33D10 C24.35D10 C20⋊(C4○D4) Dic10⋊19D4 C4⋊C4.178D10 C10.342+ 1+4 C10.352+ 1+4 C10.362+ 1+4 C4⋊C4⋊21D10 C10.732- 1+4 C10.432+ 1+4 C10.452+ 1+4 C10.462+ 1+4 C10.1152+ 1+4 C10.472+ 1+4 (Q8×Dic5)⋊C2 C22⋊Q8⋊25D5 C10.152- 1+4 C10.1182+ 1+4 C10.212- 1+4 C10.232- 1+4 C10.772- 1+4 C10.242- 1+4 C4⋊C4.197D10 C10.802- 1+4 C10.1222+ 1+4 C10.852- 1+4 C42.139D10 C42.234D10 C42.143D10 C42.144D10 C42.166D10 C42.238D10 Dic10⋊11D4 C42.168D10 Dic10⋊8Q8 C42.241D10 C42.176D10 C42.177D10 C2×D4×Dic5 C24.42D10
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | D10 | D10 | D10 | D4⋊2D5 |
kernel | C2×D4⋊2D5 | C2×Dic10 | C2×C4×D5 | D4⋊2D5 | C22×Dic5 | C2×C5⋊D4 | D4×C10 | C2×D4 | C10 | C2×C4 | D4 | C23 | C2 |
# reps | 1 | 1 | 1 | 8 | 2 | 2 | 1 | 2 | 4 | 2 | 8 | 4 | 4 |
Matrix representation of C2×D4⋊2D5 ►in GL4(𝔽41) generated by
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 32 | 0 |
0 | 0 | 9 | 9 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 32 | 23 |
0 | 0 | 9 | 9 |
34 | 40 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
34 | 40 | 0 | 0 |
7 | 7 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 40 | 40 |
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,32,9,0,0,0,9],[1,0,0,0,0,1,0,0,0,0,32,9,0,0,23,9],[34,1,0,0,40,0,0,0,0,0,1,0,0,0,0,1],[34,7,0,0,40,7,0,0,0,0,1,40,0,0,0,40] >;
C2×D4⋊2D5 in GAP, Magma, Sage, TeX
C_2\times D_4\rtimes_2D_5
% in TeX
G:=Group("C2xD4:2D5");
// GroupNames label
G:=SmallGroup(160,218);
// by ID
G=gap.SmallGroup(160,218);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,86,579,159,4613]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations