metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C20⋊3D4, Dic5⋊1D4, C23.10D10, (C2×D4)⋊6D5, (D4×C10)⋊4C2, (C2×D20)⋊9C2, C4⋊1(C5⋊D4), C5⋊2(C4⋊1D4), C2.28(D4×D5), (C4×Dic5)⋊6C2, C10.52(C2×D4), (C2×C4).52D10, (C2×C10).55C23, (C2×C20).35C22, C22.62(C22×D5), (C22×C10).22C22, (C2×Dic5).42C22, (C22×D5).12C22, (C2×C5⋊D4)⋊7C2, C2.16(C2×C5⋊D4), SmallGroup(160,161)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C20⋊D4
G = < a,b,c | a20=b4=c2=1, bab-1=a9, cac=a-1, cbc=b-1 >
Subgroups: 400 in 108 conjugacy classes, 37 normal (13 characteristic)
C1, C2, C2 [×2], C2 [×4], C4 [×2], C4 [×4], C22, C22 [×12], C5, C2×C4, C2×C4 [×2], D4 [×12], C23 [×2], C23 [×2], D5 [×2], C10, C10 [×2], C10 [×2], C42, C2×D4, C2×D4 [×5], Dic5 [×4], C20 [×2], D10 [×6], C2×C10, C2×C10 [×6], C4⋊1D4, D20 [×2], C2×Dic5 [×2], C5⋊D4 [×8], C2×C20, C5×D4 [×2], C22×D5 [×2], C22×C10 [×2], C4×Dic5, C2×D20, C2×C5⋊D4 [×4], D4×C10, C20⋊D4
Quotients: C1, C2 [×7], C22 [×7], D4 [×6], C23, D5, C2×D4 [×3], D10 [×3], C4⋊1D4, C5⋊D4 [×2], C22×D5, D4×D5 [×2], C2×C5⋊D4, C20⋊D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 51 66 35)(2 60 67 24)(3 49 68 33)(4 58 69 22)(5 47 70 31)(6 56 71 40)(7 45 72 29)(8 54 73 38)(9 43 74 27)(10 52 75 36)(11 41 76 25)(12 50 77 34)(13 59 78 23)(14 48 79 32)(15 57 80 21)(16 46 61 30)(17 55 62 39)(18 44 63 28)(19 53 64 37)(20 42 65 26)
(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(21 45)(22 44)(23 43)(24 42)(25 41)(26 60)(27 59)(28 58)(29 57)(30 56)(31 55)(32 54)(33 53)(34 52)(35 51)(36 50)(37 49)(38 48)(39 47)(40 46)(61 71)(62 70)(63 69)(64 68)(65 67)(72 80)(73 79)(74 78)(75 77)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,51,66,35)(2,60,67,24)(3,49,68,33)(4,58,69,22)(5,47,70,31)(6,56,71,40)(7,45,72,29)(8,54,73,38)(9,43,74,27)(10,52,75,36)(11,41,76,25)(12,50,77,34)(13,59,78,23)(14,48,79,32)(15,57,80,21)(16,46,61,30)(17,55,62,39)(18,44,63,28)(19,53,64,37)(20,42,65,26), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,45)(22,44)(23,43)(24,42)(25,41)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(61,71)(62,70)(63,69)(64,68)(65,67)(72,80)(73,79)(74,78)(75,77)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,51,66,35)(2,60,67,24)(3,49,68,33)(4,58,69,22)(5,47,70,31)(6,56,71,40)(7,45,72,29)(8,54,73,38)(9,43,74,27)(10,52,75,36)(11,41,76,25)(12,50,77,34)(13,59,78,23)(14,48,79,32)(15,57,80,21)(16,46,61,30)(17,55,62,39)(18,44,63,28)(19,53,64,37)(20,42,65,26), (2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(21,45)(22,44)(23,43)(24,42)(25,41)(26,60)(27,59)(28,58)(29,57)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(61,71)(62,70)(63,69)(64,68)(65,67)(72,80)(73,79)(74,78)(75,77) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,51,66,35),(2,60,67,24),(3,49,68,33),(4,58,69,22),(5,47,70,31),(6,56,71,40),(7,45,72,29),(8,54,73,38),(9,43,74,27),(10,52,75,36),(11,41,76,25),(12,50,77,34),(13,59,78,23),(14,48,79,32),(15,57,80,21),(16,46,61,30),(17,55,62,39),(18,44,63,28),(19,53,64,37),(20,42,65,26)], [(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(21,45),(22,44),(23,43),(24,42),(25,41),(26,60),(27,59),(28,58),(29,57),(30,56),(31,55),(32,54),(33,53),(34,52),(35,51),(36,50),(37,49),(38,48),(39,47),(40,46),(61,71),(62,70),(63,69),(64,68),(65,67),(72,80),(73,79),(74,78),(75,77)])
C20⋊D4 is a maximal subgroup of
C23.2D20 (C2×D4)⋊F5 Dic5.SD16 D20⋊1D4 Dic5.5D8 Dic10⋊2D4 C4⋊C4.D10 D20⋊3D4 Dic5⋊D8 C40⋊5D4 C40⋊11D4 Dic5⋊5SD16 C40⋊15D4 C40⋊9D4 D20⋊18D4 2+ 1+4⋊D5 C42.228D10 Dic10⋊24D4 C42.114D10 C42.116D10 C24⋊4D10 C24.34D10 C24.36D10 C20⋊(C4○D4) Dic10⋊20D4 C10.382+ 1+4 D20⋊19D4 C10.442+ 1+4 C10.472+ 1+4 C10.482+ 1+4 C10.662+ 1+4 C10.672+ 1+4 C10.682+ 1+4 C42.233D10 C42⋊18D10 C42.143D10 D5×C4⋊1D4 C42⋊26D10 Dic10⋊11D4 D4×C5⋊D4 C24.41D10 C10.1462+ 1+4 (C2×C20)⋊17D4 C10.1482+ 1+4 C20⋊D12 C60⋊10D4 Dic15⋊5D4 C60⋊3D4
C20⋊D4 is a maximal quotient of
C24.7D10 C24.13D10 C23⋊2D20 C20⋊5(C4⋊C4) (C2×D20)⋊22C4 (C2×C20).289D4 C42.64D10 C42.214D10 C42.65D10 C20⋊D8 C42.74D10 C20⋊4SD16 C20⋊6SD16 C42.80D10 C20⋊3Q16 C40⋊5D4 C40⋊11D4 C40.22D4 C40.31D4 C40.43D4 C40⋊15D4 C40⋊9D4 C40.26D4 C40.37D4 C40.28D4 C24.19D10 C24.21D10 C20⋊D12 C60⋊10D4 Dic15⋊5D4 C60⋊3D4
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | 20B | 20C | 20D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 20 | 20 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | D4 | D4 | D5 | D10 | D10 | C5⋊D4 | D4×D5 |
kernel | C20⋊D4 | C4×Dic5 | C2×D20 | C2×C5⋊D4 | D4×C10 | Dic5 | C20 | C2×D4 | C2×C4 | C23 | C4 | C2 |
# reps | 1 | 1 | 1 | 4 | 1 | 4 | 2 | 2 | 2 | 4 | 8 | 4 |
Matrix representation of C20⋊D4 ►in GL4(𝔽41) generated by
7 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 40 | 0 |
17 | 40 | 0 | 0 |
3 | 24 | 0 | 0 |
0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
34 | 40 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 40 |
G:=sub<GL(4,GF(41))| [7,40,0,0,1,0,0,0,0,0,0,40,0,0,1,0],[17,3,0,0,40,24,0,0,0,0,0,1,0,0,40,0],[1,34,0,0,0,40,0,0,0,0,1,0,0,0,0,40] >;
C20⋊D4 in GAP, Magma, Sage, TeX
C_{20}\rtimes D_4
% in TeX
G:=Group("C20:D4");
// GroupNames label
G:=SmallGroup(160,161);
// by ID
G=gap.SmallGroup(160,161);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,217,103,218,188,4613]);
// Polycyclic
G:=Group<a,b,c|a^20=b^4=c^2=1,b*a*b^-1=a^9,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations