# Extensions 1→N→G→Q→1 with N=C4×D5 and Q=C4

Direct product G=N×Q with N=C4×D5 and Q=C4
dρLabelID
D5×C4280D5xC4^2160,92

Semidirect products G=N:Q with N=C4×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×D5)⋊1C4 = D5×C4⋊C4φ: C4/C2C2 ⊆ Out C4×D580(C4xD5):1C4160,112
(C4×D5)⋊2C4 = C4⋊C47D5φ: C4/C2C2 ⊆ Out C4×D580(C4xD5):2C4160,113
(C4×D5)⋊3C4 = C42⋊D5φ: C4/C2C2 ⊆ Out C4×D580(C4xD5):3C4160,93
(C4×D5)⋊4C4 = C2×C4⋊F5φ: C4/C2C2 ⊆ Out C4×D540(C4xD5):4C4160,204
(C4×D5)⋊5C4 = C2×C4×F5φ: C4/C2C2 ⊆ Out C4×D540(C4xD5):5C4160,203
(C4×D5)⋊6C4 = D10.C23φ: C4/C2C2 ⊆ Out C4×D5404(C4xD5):6C4160,205

Non-split extensions G=N.Q with N=C4×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C4×D5).1C4 = D5×M4(2)φ: C4/C2C2 ⊆ Out C4×D5404(C4xD5).1C4160,127
(C4×D5).2C4 = C80⋊C2φ: C4/C2C2 ⊆ Out C4×D5802(C4xD5).2C4160,5
(C4×D5).3C4 = C2×C8⋊D5φ: C4/C2C2 ⊆ Out C4×D580(C4xD5).3C4160,121
(C4×D5).4C4 = C2×C4.F5φ: C4/C2C2 ⊆ Out C4×D580(C4xD5).4C4160,201
(C4×D5).5C4 = D5⋊C16φ: C4/C2C2 ⊆ Out C4×D5804(C4xD5).5C4160,64
(C4×D5).6C4 = C8.F5φ: C4/C2C2 ⊆ Out C4×D5804(C4xD5).6C4160,65
(C4×D5).7C4 = C2×D5⋊C8φ: C4/C2C2 ⊆ Out C4×D580(C4xD5).7C4160,200
(C4×D5).8C4 = D5⋊M4(2)φ: C4/C2C2 ⊆ Out C4×D5404(C4xD5).8C4160,202
(C4×D5).9C4 = D5×C16φ: trivial image802(C4xD5).9C4160,4
(C4×D5).10C4 = D5×C2×C8φ: trivial image80(C4xD5).10C4160,120

׿
×
𝔽