Copied to
clipboard

G = C8.F5order 160 = 25·5

3rd non-split extension by C8 of F5 acting via F5/D5=C2

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C8.3F5, C40.5C4, C51M5(2), D10.3C8, Dic5.3C8, C5⋊C161C2, C10.2(C2×C8), (C4×D5).6C4, (C8×D5).8C2, C4.15(C2×F5), C20.14(C2×C4), C2.3(D5⋊C8), C52C8.15C22, SmallGroup(160,65)

Series: Derived Chief Lower central Upper central

C1C10 — C8.F5
C1C5C10C20C52C8C5⋊C16 — C8.F5
C5C10 — C8.F5
C1C4C8

Generators and relations for C8.F5
 G = < a,b,c | a8=b5=1, c4=a2, ab=ba, cac-1=a5, cbc-1=b3 >

10C2
5C22
5C4
2D5
5C8
5C2×C4
5C16
5C2×C8
5C16
5M5(2)

Character table of C8.F5

 class 12A2B4A4B4C58A8B8C8D8E8F1016A16B16C16D16E16F16G16H20A20B40A40B40C40D
 size 11101110422555541010101010101010444444
ρ11111111111111111111111111111    trivial
ρ211-111-11-1-111111-1111-1-1-1111-1-1-1-1    linear of order 2
ρ311-111-11-1-1111111-1-1-1111-111-1-1-1-1    linear of order 2
ρ411111111111111-1-1-1-1-1-1-1-1111111    linear of order 2
ρ51111111-1-1-1-1-1-11ii-i-i-i-iii11-1-1-1-1    linear of order 4
ρ61111111-1-1-1-1-1-11-i-iiiii-i-i11-1-1-1-1    linear of order 4
ρ711-111-1111-1-1-1-11i-iii-i-ii-i111111    linear of order 4
ρ811-111-1111-1-1-1-11-ii-i-iii-ii111111    linear of order 4
ρ911-1-1-111-iii-ii-i1ζ87ζ87ζ8ζ85ζ85ζ8ζ83ζ83-1-1i-ii-i    linear of order 8
ρ1011-1-1-111-iii-ii-i1ζ83ζ83ζ85ζ8ζ8ζ85ζ87ζ87-1-1i-ii-i    linear of order 8
ρ11111-1-1-11-ii-ii-ii1ζ85ζ8ζ87ζ83ζ87ζ83ζ8ζ85-1-1i-ii-i    linear of order 8
ρ12111-1-1-11-ii-ii-ii1ζ8ζ85ζ83ζ87ζ83ζ87ζ85ζ8-1-1i-ii-i    linear of order 8
ρ1311-1-1-111i-i-ii-ii1ζ85ζ85ζ83ζ87ζ87ζ83ζ8ζ8-1-1-ii-ii    linear of order 8
ρ14111-1-1-11i-ii-ii-i1ζ83ζ87ζ8ζ85ζ8ζ85ζ87ζ83-1-1-ii-ii    linear of order 8
ρ15111-1-1-11i-ii-ii-i1ζ87ζ83ζ85ζ8ζ85ζ8ζ83ζ87-1-1-ii-ii    linear of order 8
ρ1611-1-1-111i-i-ii-ii1ζ8ζ8ζ87ζ83ζ83ζ87ζ85ζ85-1-1-ii-ii    linear of order 8
ρ172-20-2i2i02008878583-2000000002i-2i0000    complex lifted from M5(2)
ρ182-202i-2i02008788385-200000000-2i2i0000    complex lifted from M5(2)
ρ192-202i-2i02008385878-200000000-2i2i0000    complex lifted from M5(2)
ρ202-20-2i2i02008583887-2000000002i-2i0000    complex lifted from M5(2)
ρ21440440-1440000-100000000-1-1-1-1-1-1    orthogonal lifted from F5
ρ22440440-1-4-40000-100000000-1-11111    orthogonal lifted from C2×F5
ρ23440-4-40-14i-4i0000-10000000011i-ii-i    complex lifted from D5⋊C8, Schur index 2
ρ24440-4-40-1-4i4i0000-10000000011-ii-ii    complex lifted from D5⋊C8, Schur index 2
ρ254-404i-4i0-1000000100000000i-i8ζ54+2ζ8ζ5883ζ54+2ζ83ζ58385ζ54+2ζ85ζ58583ζ53+2ζ83ζ5283    complex faithful, Schur index 2
ρ264-40-4i4i0-1000000100000000-ii83ζ53+2ζ83ζ528385ζ54+2ζ85ζ58583ζ54+2ζ83ζ5838ζ54+2ζ8ζ58    complex faithful, Schur index 2
ρ274-404i-4i0-1000000100000000i-i85ζ54+2ζ85ζ58583ζ53+2ζ83ζ52838ζ54+2ζ8ζ5883ζ54+2ζ83ζ583    complex faithful, Schur index 2
ρ284-40-4i4i0-1000000100000000-ii83ζ54+2ζ83ζ5838ζ54+2ζ8ζ5883ζ53+2ζ83ζ528385ζ54+2ζ85ζ585    complex faithful, Schur index 2

Smallest permutation representation of C8.F5
On 80 points
Generators in S80
(1 11 5 15 9 3 13 7)(2 4 6 8 10 12 14 16)(17 62 21 50 25 54 29 58)(18 55 22 59 26 63 30 51)(19 64 23 52 27 56 31 60)(20 57 24 61 28 49 32 53)(33 70 37 74 41 78 45 66)(34 79 38 67 42 71 46 75)(35 72 39 76 43 80 47 68)(36 65 40 69 44 73 48 77)
(1 36 23 58 71)(2 59 37 72 24)(3 73 60 25 38)(4 26 74 39 61)(5 40 27 62 75)(6 63 41 76 28)(7 77 64 29 42)(8 30 78 43 49)(9 44 31 50 79)(10 51 45 80 32)(11 65 52 17 46)(12 18 66 47 53)(13 48 19 54 67)(14 55 33 68 20)(15 69 56 21 34)(16 22 70 35 57)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,11,5,15,9,3,13,7)(2,4,6,8,10,12,14,16)(17,62,21,50,25,54,29,58)(18,55,22,59,26,63,30,51)(19,64,23,52,27,56,31,60)(20,57,24,61,28,49,32,53)(33,70,37,74,41,78,45,66)(34,79,38,67,42,71,46,75)(35,72,39,76,43,80,47,68)(36,65,40,69,44,73,48,77), (1,36,23,58,71)(2,59,37,72,24)(3,73,60,25,38)(4,26,74,39,61)(5,40,27,62,75)(6,63,41,76,28)(7,77,64,29,42)(8,30,78,43,49)(9,44,31,50,79)(10,51,45,80,32)(11,65,52,17,46)(12,18,66,47,53)(13,48,19,54,67)(14,55,33,68,20)(15,69,56,21,34)(16,22,70,35,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)>;

G:=Group( (1,11,5,15,9,3,13,7)(2,4,6,8,10,12,14,16)(17,62,21,50,25,54,29,58)(18,55,22,59,26,63,30,51)(19,64,23,52,27,56,31,60)(20,57,24,61,28,49,32,53)(33,70,37,74,41,78,45,66)(34,79,38,67,42,71,46,75)(35,72,39,76,43,80,47,68)(36,65,40,69,44,73,48,77), (1,36,23,58,71)(2,59,37,72,24)(3,73,60,25,38)(4,26,74,39,61)(5,40,27,62,75)(6,63,41,76,28)(7,77,64,29,42)(8,30,78,43,49)(9,44,31,50,79)(10,51,45,80,32)(11,65,52,17,46)(12,18,66,47,53)(13,48,19,54,67)(14,55,33,68,20)(15,69,56,21,34)(16,22,70,35,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,11,5,15,9,3,13,7),(2,4,6,8,10,12,14,16),(17,62,21,50,25,54,29,58),(18,55,22,59,26,63,30,51),(19,64,23,52,27,56,31,60),(20,57,24,61,28,49,32,53),(33,70,37,74,41,78,45,66),(34,79,38,67,42,71,46,75),(35,72,39,76,43,80,47,68),(36,65,40,69,44,73,48,77)], [(1,36,23,58,71),(2,59,37,72,24),(3,73,60,25,38),(4,26,74,39,61),(5,40,27,62,75),(6,63,41,76,28),(7,77,64,29,42),(8,30,78,43,49),(9,44,31,50,79),(10,51,45,80,32),(11,65,52,17,46),(12,18,66,47,53),(13,48,19,54,67),(14,55,33,68,20),(15,69,56,21,34),(16,22,70,35,57)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)]])

C8.F5 is a maximal subgroup of
C16⋊F5  C164F5  D10.D8  D40.C4  D401C4  Dic20.C4  D5⋊M5(2)  Dic10.C8  D30.C8  C120.C4
C8.F5 is a maximal quotient of
C40.C8  D10⋊C16  C10.M5(2)  D30.C8  C120.C4

Matrix representation of C8.F5 in GL6(𝔽241)

21100000
0300000
00240000
00024000
00002400
00000240
,
100000
010000
00000240
00100240
00010240
00001240
,
010000
3000000
0018259330
00215590182
00182059215
0003359182

G:=sub<GL(6,GF(241))| [211,0,0,0,0,0,0,30,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,240,240,240,240],[0,30,0,0,0,0,1,0,0,0,0,0,0,0,182,215,182,0,0,0,59,59,0,33,0,0,33,0,59,59,0,0,0,182,215,182] >;

C8.F5 in GAP, Magma, Sage, TeX

C_8.F_5
% in TeX

G:=Group("C8.F5");
// GroupNames label

G:=SmallGroup(160,65);
// by ID

G=gap.SmallGroup(160,65);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,24,217,55,50,69,2309,1169]);
// Polycyclic

G:=Group<a,b,c|a^8=b^5=1,c^4=a^2,a*b=b*a,c*a*c^-1=a^5,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C8.F5 in TeX
Character table of C8.F5 in TeX

׿
×
𝔽