Extensions 1→N→G→Q→1 with N=C2xC3:C8 and Q=C4

Direct product G=NxQ with N=C2xC3:C8 and Q=C4
dρLabelID
C2xC4xC3:C8192C2xC4xC3:C8192,479

Semidirect products G=N:Q with N=C2xC3:C8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xC3:C8):1C4 = C42:3Dic3φ: C4/C1C4 ⊆ Out C2xC3:C8484(C2xC3:C8):1C4192,90
(C2xC3:C8):2C4 = (C2xC12).Q8φ: C4/C1C4 ⊆ Out C2xC3:C8484(C2xC3:C8):2C4192,92
(C2xC3:C8):3C4 = M4(2):4Dic3φ: C4/C1C4 ⊆ Out C2xC3:C8484(C2xC3:C8):3C4192,118
(C2xC3:C8):4C4 = C12.C42φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8):4C4192,88
(C2xC3:C8):5C4 = C2xC6.Q16φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8):5C4192,521
(C2xC3:C8):6C4 = C2xC12.Q8φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8):6C4192,522
(C2xC3:C8):7C4 = C12.5C42φ: C4/C2C2 ⊆ Out C2xC3:C896(C2xC3:C8):7C4192,556
(C2xC3:C8):8C4 = C4:C4.234D6φ: C4/C2C2 ⊆ Out C2xC3:C896(C2xC3:C8):8C4192,557
(C2xC3:C8):9C4 = C12.7C42φ: C4/C2C2 ⊆ Out C2xC3:C896(C2xC3:C8):9C4192,681
(C2xC3:C8):10C4 = (C2xC12):3C8φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8):10C4192,83
(C2xC3:C8):11C4 = (C2xC24):5C4φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8):11C4192,109
(C2xC3:C8):12C4 = C2xC42.S3φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8):12C4192,480
(C2xC3:C8):13C4 = C2xC24:C4φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8):13C4192,659
(C2xC3:C8):14C4 = Dic3xC2xC8φ: trivial image192(C2xC3:C8):14C4192,657

Non-split extensions G=N.Q with N=C2xC3:C8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2xC3:C8).1C4 = C48:C4φ: C4/C1C4 ⊆ Out C2xC3:C8484(C2xC3:C8).1C4192,71
(C2xC3:C8).2C4 = C8.25D12φ: C4/C1C4 ⊆ Out C2xC3:C8484(C2xC3:C8).2C4192,73
(C2xC3:C8).3C4 = C12.21C42φ: C4/C1C4 ⊆ Out C2xC3:C8484(C2xC3:C8).3C4192,119
(C2xC3:C8).4C4 = C12.53D8φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8).4C4192,38
(C2xC3:C8).5C4 = C12.39SD16φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8).5C4192,39
(C2xC3:C8).6C4 = C24.97D4φ: C4/C2C2 ⊆ Out C2xC3:C8484(C2xC3:C8).6C4192,70
(C2xC3:C8).7C4 = C12.4C42φ: C4/C2C2 ⊆ Out C2xC3:C896(C2xC3:C8).7C4192,117
(C2xC3:C8).8C4 = S3xM5(2)φ: C4/C2C2 ⊆ Out C2xC3:C8484(C2xC3:C8).8C4192,465
(C2xC3:C8).9C4 = C2xC12.53D4φ: C4/C2C2 ⊆ Out C2xC3:C896(C2xC3:C8).9C4192,682
(C2xC3:C8).10C4 = C42.279D6φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8).10C4192,13
(C2xC3:C8).11C4 = C24:C8φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8).11C4192,14
(C2xC3:C8).12C4 = Dic3:C16φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8).12C4192,60
(C2xC3:C8).13C4 = C48:10C4φ: C4/C2C2 ⊆ Out C2xC3:C8192(C2xC3:C8).13C4192,61
(C2xC3:C8).14C4 = D6:C16φ: C4/C2C2 ⊆ Out C2xC3:C896(C2xC3:C8).14C4192,66
(C2xC3:C8).15C4 = C2xD6.C8φ: C4/C2C2 ⊆ Out C2xC3:C896(C2xC3:C8).15C4192,459
(C2xC3:C8).16C4 = C8xC3:C8φ: trivial image192(C2xC3:C8).16C4192,12
(C2xC3:C8).17C4 = Dic3xC16φ: trivial image192(C2xC3:C8).17C4192,59
(C2xC3:C8).18C4 = S3xC2xC16φ: trivial image96(C2xC3:C8).18C4192,458

׿
x
:
Z
F
o
wr
Q
<