direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C2×C3⋊C8, C6⋊C8, C12.3C4, C4.14D6, C4.3Dic3, C12.14C22, C22.2Dic3, C4○(C3⋊C8), C3⋊2(C2×C8), (C2×C4).5S3, C6.5(C2×C4), (C2×C6).2C4, (C2×C12).5C2, C2.1(C2×Dic3), SmallGroup(48,9)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C6 — C12 — C3⋊C8 — C2×C3⋊C8 |
C3 — C2×C3⋊C8 |
Generators and relations for C2×C3⋊C8
G = < a,b,c | a2=b3=c8=1, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C2×C3⋊C8
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | -i | i | i | -i | i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | -i | -i | i | i | -1 | 1 | -1 | 1 | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | i | -i | -i | i | -i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | i | i | -i | -i | -1 | 1 | -1 | 1 | linear of order 4 |
ρ9 | 1 | -1 | 1 | -1 | 1 | i | -i | i | -i | 1 | -1 | -1 | ζ87 | ζ85 | ζ83 | ζ87 | ζ8 | ζ85 | ζ83 | ζ8 | -i | i | i | -i | linear of order 8 |
ρ10 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -1 | -1 | 1 | ζ85 | ζ83 | ζ85 | ζ8 | ζ83 | ζ87 | ζ8 | ζ87 | i | i | -i | -i | linear of order 8 |
ρ11 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | i | 1 | -1 | -1 | ζ8 | ζ83 | ζ85 | ζ8 | ζ87 | ζ83 | ζ85 | ζ87 | i | -i | -i | i | linear of order 8 |
ρ12 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -1 | -1 | 1 | ζ83 | ζ85 | ζ83 | ζ87 | ζ85 | ζ8 | ζ87 | ζ8 | -i | -i | i | i | linear of order 8 |
ρ13 | 1 | -1 | 1 | -1 | 1 | i | -i | i | -i | 1 | -1 | -1 | ζ83 | ζ8 | ζ87 | ζ83 | ζ85 | ζ8 | ζ87 | ζ85 | -i | i | i | -i | linear of order 8 |
ρ14 | 1 | -1 | -1 | 1 | 1 | i | i | -i | -i | -1 | -1 | 1 | ζ8 | ζ87 | ζ8 | ζ85 | ζ87 | ζ83 | ζ85 | ζ83 | i | i | -i | -i | linear of order 8 |
ρ15 | 1 | -1 | -1 | 1 | 1 | -i | -i | i | i | -1 | -1 | 1 | ζ87 | ζ8 | ζ87 | ζ83 | ζ8 | ζ85 | ζ83 | ζ85 | -i | -i | i | i | linear of order 8 |
ρ16 | 1 | -1 | 1 | -1 | 1 | -i | i | -i | i | 1 | -1 | -1 | ζ85 | ζ87 | ζ8 | ζ85 | ζ83 | ζ87 | ζ8 | ζ83 | i | -i | -i | i | linear of order 8 |
ρ17 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | 2 | -2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ19 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | -2 | 2 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ20 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | -1 | -2i | 2i | -2i | 2i | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | i | i | -i | complex lifted from C3⋊C8 |
ρ22 | 2 | -2 | -2 | 2 | -1 | 2i | 2i | -2i | -2i | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -i | -i | i | i | complex lifted from C3⋊C8 |
ρ23 | 2 | -2 | -2 | 2 | -1 | -2i | -2i | 2i | 2i | 1 | 1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | i | -i | -i | complex lifted from C3⋊C8 |
ρ24 | 2 | -2 | 2 | -2 | -1 | 2i | -2i | 2i | -2i | -1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | i | -i | -i | i | complex lifted from C3⋊C8 |
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 17)(8 18)(9 45)(10 46)(11 47)(12 48)(13 41)(14 42)(15 43)(16 44)(25 40)(26 33)(27 34)(28 35)(29 36)(30 37)(31 38)(32 39)
(1 28 45)(2 46 29)(3 30 47)(4 48 31)(5 32 41)(6 42 25)(7 26 43)(8 44 27)(9 19 35)(10 36 20)(11 21 37)(12 38 22)(13 23 39)(14 40 24)(15 17 33)(16 34 18)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,45)(10,46)(11,47)(12,48)(13,41)(14,42)(15,43)(16,44)(25,40)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39), (1,28,45)(2,46,29)(3,30,47)(4,48,31)(5,32,41)(6,42,25)(7,26,43)(8,44,27)(9,19,35)(10,36,20)(11,21,37)(12,38,22)(13,23,39)(14,40,24)(15,17,33)(16,34,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;
G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,17)(8,18)(9,45)(10,46)(11,47)(12,48)(13,41)(14,42)(15,43)(16,44)(25,40)(26,33)(27,34)(28,35)(29,36)(30,37)(31,38)(32,39), (1,28,45)(2,46,29)(3,30,47)(4,48,31)(5,32,41)(6,42,25)(7,26,43)(8,44,27)(9,19,35)(10,36,20)(11,21,37)(12,38,22)(13,23,39)(14,40,24)(15,17,33)(16,34,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,17),(8,18),(9,45),(10,46),(11,47),(12,48),(13,41),(14,42),(15,43),(16,44),(25,40),(26,33),(27,34),(28,35),(29,36),(30,37),(31,38),(32,39)], [(1,28,45),(2,46,29),(3,30,47),(4,48,31),(5,32,41),(6,42,25),(7,26,43),(8,44,27),(9,19,35),(10,36,20),(11,21,37),(12,38,22),(13,23,39),(14,40,24),(15,17,33),(16,34,18)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])
C2×C3⋊C8 is a maximal subgroup of
C42.S3 C12⋊C8 C6.Q16 C12.Q8 C6.D8 C6.SD16 C8×Dic3 Dic3⋊C8 C24⋊C4 D6⋊C8 C12.53D4 C12.55D4 D4⋊Dic3 Q8⋊2Dic3 S3×C2×C8 D12.C4 D4.Dic3 Q8.13D6 C2.U2(𝔽3) C60.C4 C33⋊7(C2×C8)
C2×C3⋊C8 is a maximal quotient of
C12⋊C8 C12.C8 C12.55D4 C60.C4 C33⋊7(C2×C8)
Matrix representation of C2×C3⋊C8 ►in GL3(𝔽73) generated by
72 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 72 | 72 |
0 | 1 | 0 |
63 | 0 | 0 |
0 | 66 | 41 |
0 | 48 | 7 |
G:=sub<GL(3,GF(73))| [72,0,0,0,1,0,0,0,1],[1,0,0,0,72,1,0,72,0],[63,0,0,0,66,48,0,41,7] >;
C2×C3⋊C8 in GAP, Magma, Sage, TeX
C_2\times C_3\rtimes C_8
% in TeX
G:=Group("C2xC3:C8");
// GroupNames label
G:=SmallGroup(48,9);
// by ID
G=gap.SmallGroup(48,9);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,20,42,804]);
// Polycyclic
G:=Group<a,b,c|a^2=b^3=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C2×C3⋊C8 in TeX
Character table of C2×C3⋊C8 in TeX