extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(Dic3:C4) = C8.Dic6 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.1(Dic3:C4) | 192,46 |
C4.2(Dic3:C4) = C6.6D16 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 192 | | C4.2(Dic3:C4) | 192,48 |
C4.3(Dic3:C4) = C6.SD32 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 192 | | C4.3(Dic3:C4) | 192,49 |
C4.4(Dic3:C4) = C24.7Q8 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 96 | 4 | C4.4(Dic3:C4) | 192,52 |
C4.5(Dic3:C4) = C24.6Q8 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.5(Dic3:C4) | 192,53 |
C4.6(Dic3:C4) = C12.C42 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 192 | | C4.6(Dic3:C4) | 192,88 |
C4.7(Dic3:C4) = C12.(C4:C4) | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 96 | | C4.7(Dic3:C4) | 192,89 |
C4.8(Dic3:C4) = C42:3Dic3 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.8(Dic3:C4) | 192,90 |
C4.9(Dic3:C4) = (C2xC12).Q8 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.9(Dic3:C4) | 192,92 |
C4.10(Dic3:C4) = C12.3C42 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 48 | | C4.10(Dic3:C4) | 192,114 |
C4.11(Dic3:C4) = (C2xC24):C4 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.11(Dic3:C4) | 192,115 |
C4.12(Dic3:C4) = C12.20C42 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.12(Dic3:C4) | 192,116 |
C4.13(Dic3:C4) = M4(2):4Dic3 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.13(Dic3:C4) | 192,118 |
C4.14(Dic3:C4) = C2xC6.Q16 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 192 | | C4.14(Dic3:C4) | 192,521 |
C4.15(Dic3:C4) = C2xC12.Q8 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 192 | | C4.15(Dic3:C4) | 192,522 |
C4.16(Dic3:C4) = C4:C4.225D6 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 96 | | C4.16(Dic3:C4) | 192,523 |
C4.17(Dic3:C4) = (C4xDic3):9C4 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 192 | | C4.17(Dic3:C4) | 192,536 |
C4.18(Dic3:C4) = Dic3:4M4(2) | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 96 | | C4.18(Dic3:C4) | 192,677 |
C4.19(Dic3:C4) = C12.88(C2xQ8) | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 96 | | C4.19(Dic3:C4) | 192,678 |
C4.20(Dic3:C4) = C2xC12.53D4 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 96 | | C4.20(Dic3:C4) | 192,682 |
C4.21(Dic3:C4) = C23.8Dic6 | φ: Dic3:C4/C2xDic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.21(Dic3:C4) | 192,683 |
C4.22(Dic3:C4) = C12.8C42 | φ: Dic3:C4/C2xC12 → C2 ⊆ Aut C4 | 48 | | C4.22(Dic3:C4) | 192,82 |
C4.23(Dic3:C4) = C12.9C42 | φ: Dic3:C4/C2xC12 → C2 ⊆ Aut C4 | 192 | | C4.23(Dic3:C4) | 192,110 |
C4.24(Dic3:C4) = M4(2):Dic3 | φ: Dic3:C4/C2xC12 → C2 ⊆ Aut C4 | 96 | | C4.24(Dic3:C4) | 192,113 |
C4.25(Dic3:C4) = C4:C4.232D6 | φ: Dic3:C4/C2xC12 → C2 ⊆ Aut C4 | 96 | | C4.25(Dic3:C4) | 192,554 |
C4.26(Dic3:C4) = Dic3:C8:C2 | φ: Dic3:C4/C2xC12 → C2 ⊆ Aut C4 | 96 | | C4.26(Dic3:C4) | 192,661 |
C4.27(Dic3:C4) = Dic3:C16 | central extension (φ=1) | 192 | | C4.27(Dic3:C4) | 192,60 |
C4.28(Dic3:C4) = C24.97D4 | central extension (φ=1) | 48 | 4 | C4.28(Dic3:C4) | 192,70 |
C4.29(Dic3:C4) = (C2xC12):3C8 | central extension (φ=1) | 192 | | C4.29(Dic3:C4) | 192,83 |
C4.30(Dic3:C4) = C12.2C42 | central extension (φ=1) | 48 | | C4.30(Dic3:C4) | 192,91 |
C4.31(Dic3:C4) = (C2xC24):5C4 | central extension (φ=1) | 192 | | C4.31(Dic3:C4) | 192,109 |
C4.32(Dic3:C4) = C4:C4.234D6 | central extension (φ=1) | 96 | | C4.32(Dic3:C4) | 192,557 |
C4.33(Dic3:C4) = C2xDic3:C8 | central extension (φ=1) | 192 | | C4.33(Dic3:C4) | 192,658 |