Copied to
clipboard

G = C8.Dic6order 192 = 26·3

1st non-split extension by C8 of Dic6 acting via Dic6/C6=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.5Q8, C8.1Dic6, C12.2SD16, C3⋊C161C4, C31(C8.Q8), C8.28(C4×S3), (C2×C8).40D6, C12.1(C4⋊C4), C4.Q8.1S3, C24.32(C2×C4), (C2×C12).87D4, C6.2(C4.Q8), (C2×C6).29SD16, C24.C4.4C2, C12.C8.2C2, C4.1(Dic3⋊C4), (C2×C24).46C22, C4.6(Q82S3), C22.5(D4.S3), C2.3(C12.Q8), (C3×C4.Q8).1C2, (C2×C4).15(C3⋊D4), SmallGroup(192,46)

Series: Derived Chief Lower central Upper central

C1C24 — C8.Dic6
C1C3C6C12C2×C12C2×C24C12.C8 — C8.Dic6
C3C6C12C24 — C8.Dic6
C1C2C2×C4C2×C8C4.Q8

Generators and relations for C8.Dic6
 G = < a,b,c | a8=b12=1, c2=ab6, bab-1=a3, cac-1=a5, cbc-1=a-1b-1 >

2C2
8C4
2C6
4C2×C4
12C8
8C12
2C4⋊C4
3C16
3C16
6M4(2)
4C2×C12
4C3⋊C8
3C8.C4
3M5(2)
2C3×C4⋊C4
2C4.Dic3
3C8.Q8

Character table of C8.Dic6

 class 12A2B34A4B4C4D6A6B6C8A8B8C8D8E12A12B12C12D12E12F16A16B16C16D24A24B24C24D
 size 112222882222242424448888121212124444
ρ1111111111111111111111111111111    trivial
ρ2111111-1-11111111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ311111111111111-1-1111111-1-1-1-11111    linear of order 2
ρ4111111-1-1111111-1-111-1-1-1-111111111    linear of order 2
ρ511-11-11-ii-1-1111-1i-i-11-iii-i1-1-1111-1-1    linear of order 4
ρ611-11-11i-i-1-1111-1-ii-11i-i-ii1-1-1111-1-1    linear of order 4
ρ711-11-11-ii-1-1111-1-ii-11-iii-i-111-111-1-1    linear of order 4
ρ811-11-11i-i-1-1111-1i-i-11i-i-ii-111-111-1-1    linear of order 4
ρ922222200222-2-2-2002200000000-2-2-2-2    orthogonal lifted from D4
ρ10222-12222-1-1-122200-1-1-1-1-1-10000-1-1-1-1    orthogonal lifted from S3
ρ11222-122-2-2-1-1-122200-1-111110000-1-1-1-1    orthogonal lifted from D6
ρ1222-22-2200-2-22-2-2200-2200000000-2-222    symplectic lifted from Q8, Schur index 2
ρ1322-2-1-220011-1-2-22001-133-3-3000011-1-1    symplectic lifted from Dic6, Schur index 2
ρ1422-2-1-220011-1-2-22001-1-3-333000011-1-1    symplectic lifted from Dic6, Schur index 2
ρ1522-2-1-22-2i2i11-122-2001-1i-i-ii0000-1-111    complex lifted from C4×S3
ρ1622-2-1-222i-2i11-122-2001-1-iii-i0000-1-111    complex lifted from C4×S3
ρ17222-12200-1-1-1-2-2-200-1-1--3-3--3-300001111    complex lifted from C3⋊D4
ρ18222-12200-1-1-1-2-2-200-1-1-3--3-3--300001111    complex lifted from C3⋊D4
ρ1922-222-200-2-22000002-20000-2-2--2--20000    complex lifted from SD16
ρ202222-2-20022200000-2-20000-2--2-2--20000    complex lifted from SD16
ρ2122-222-200-2-22000002-20000--2--2-2-20000    complex lifted from SD16
ρ222222-2-20022200000-2-20000--2-2--2-20000    complex lifted from SD16
ρ2344-4-24-40022-200000-22000000000000    orthogonal lifted from Q82S3
ρ24444-2-4-400-2-2-20000022000000000000    symplectic lifted from D4.S3, Schur index 2
ρ254-404000000-4-2-22-20000000000000-2-22-200    complex lifted from C8.Q8
ρ264-404000000-42-2-2-200000000000002-2-2-200    complex lifted from C8.Q8
ρ274-40-20000-2-32-32-2-22-20000000000000-2--26-6    complex faithful
ρ284-40-20000-2-32-322-2-2-20000000000000--2-2-66    complex faithful
ρ294-40-200002-3-2-322-2-2-20000000000000--2-26-6    complex faithful
ρ304-40-200002-3-2-32-2-22-20000000000000-2--2-66    complex faithful

Smallest permutation representation of C8.Dic6
On 48 points
Generators in S48
(1 3 5 7 9 11 13 15)(2 12 6 16 10 4 14 8)(17 27 21 31 25 19 29 23)(18 20 22 24 26 28 30 32)(33 43 37 47 41 35 45 39)(34 36 38 40 42 44 46 48)
(1 32 40)(2 35 25 4 41 27 10 43 17 12 33 19)(3 22 42 7 18 46)(5 28 44 13 20 36)(6 47 29 16 45 23 14 39 21 8 37 31)(9 24 48)(11 30 34 15 26 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,3,5,7,9,11,13,15)(2,12,6,16,10,4,14,8)(17,27,21,31,25,19,29,23)(18,20,22,24,26,28,30,32)(33,43,37,47,41,35,45,39)(34,36,38,40,42,44,46,48), (1,32,40)(2,35,25,4,41,27,10,43,17,12,33,19)(3,22,42,7,18,46)(5,28,44,13,20,36)(6,47,29,16,45,23,14,39,21,8,37,31)(9,24,48)(11,30,34,15,26,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)>;

G:=Group( (1,3,5,7,9,11,13,15)(2,12,6,16,10,4,14,8)(17,27,21,31,25,19,29,23)(18,20,22,24,26,28,30,32)(33,43,37,47,41,35,45,39)(34,36,38,40,42,44,46,48), (1,32,40)(2,35,25,4,41,27,10,43,17,12,33,19)(3,22,42,7,18,46)(5,28,44,13,20,36)(6,47,29,16,45,23,14,39,21,8,37,31)(9,24,48)(11,30,34,15,26,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,3,5,7,9,11,13,15),(2,12,6,16,10,4,14,8),(17,27,21,31,25,19,29,23),(18,20,22,24,26,28,30,32),(33,43,37,47,41,35,45,39),(34,36,38,40,42,44,46,48)], [(1,32,40),(2,35,25,4,41,27,10,43,17,12,33,19),(3,22,42,7,18,46),(5,28,44,13,20,36),(6,47,29,16,45,23,14,39,21,8,37,31),(9,24,48),(11,30,34,15,26,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)]])

Matrix representation of C8.Dic6 in GL6(𝔽97)

9600000
0960000
00405700
00404000
00005740
00005757
,
0220000
75750000
001000
0009600
00004057
00005757
,
82550000
70150000
000010
000001
00405700
00404000

G:=sub<GL(6,GF(97))| [96,0,0,0,0,0,0,96,0,0,0,0,0,0,40,40,0,0,0,0,57,40,0,0,0,0,0,0,57,57,0,0,0,0,40,57],[0,75,0,0,0,0,22,75,0,0,0,0,0,0,1,0,0,0,0,0,0,96,0,0,0,0,0,0,40,57,0,0,0,0,57,57],[82,70,0,0,0,0,55,15,0,0,0,0,0,0,0,0,40,40,0,0,0,0,57,40,0,0,1,0,0,0,0,0,0,1,0,0] >;

C8.Dic6 in GAP, Magma, Sage, TeX

C_8.{\rm Dic}_6
% in TeX

G:=Group("C8.Dic6");
// GroupNames label

G:=SmallGroup(192,46);
// by ID

G=gap.SmallGroup(192,46);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,365,36,758,346,80,851,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=b^12=1,c^2=a*b^6,b*a*b^-1=a^3,c*a*c^-1=a^5,c*b*c^-1=a^-1*b^-1>;
// generators/relations

Export

Subgroup lattice of C8.Dic6 in TeX
Character table of C8.Dic6 in TeX

׿
×
𝔽