Extensions 1→N→G→Q→1 with N=D12.C4 and Q=C2

Direct product G=N×Q with N=D12.C4 and Q=C2
dρLabelID
C2×D12.C496C2xD12.C4192,1303

Semidirect products G=N:Q with N=D12.C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D12.C41C2 = D85D6φ: C2/C1C2 ⊆ Out D12.C4488+D12.C4:1C2192,1333
D12.C42C2 = D86D6φ: C2/C1C2 ⊆ Out D12.C4488-D12.C4:2C2192,1334
D12.C43C2 = C24.C23φ: C2/C1C2 ⊆ Out D12.C4488+D12.C4:3C2192,1337
D12.C44C2 = SD16.D6φ: C2/C1C2 ⊆ Out D12.C4968-D12.C4:4C2192,1338
D12.C45C2 = D12.2D4φ: C2/C1C2 ⊆ Out D12.C4488-D12.C4:5C2192,307
D12.C46C2 = D12.3D4φ: C2/C1C2 ⊆ Out D12.C4488+D12.C4:6C2192,308
D12.C47C2 = D12.6D4φ: C2/C1C2 ⊆ Out D12.C4488+D12.C4:7C2192,313
D12.C48C2 = M4(2).22D6φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:8C2192,382
D12.C49C2 = C42.196D6φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:9C2192,383
D12.C410C2 = D2410C4φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:10C2192,453
D12.C411C2 = D247C4φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:11C2192,454
D12.C412C2 = M4(2)⋊26D6φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:12C2192,1304
D12.C413C2 = M4(2)⋊28D6φ: C2/C1C2 ⊆ Out D12.C4484D12.C4:13C2192,1309
D12.C414C2 = S3×C8○D4φ: trivial image484D12.C4:14C2192,1308

Non-split extensions G=N.Q with N=D12.C4 and Q=C2
extensionφ:Q→Out NdρLabelID
D12.C4.C2 = D12.7D4φ: C2/C1C2 ⊆ Out D12.C4968-D12.C4.C2192,314

׿
×
𝔽